Approximating the Minimum Spanning Tree
Weight in Sublinear Time*

wn

Bernard Chagzelle f Ronitt Rubinfeld * Luca Trevisan

Abstract

We present a probabilistic algorithm that, given a connected graph
G (represented by adjacency lists) of average degree d, with edge
weights in the set {1,...,w}, and given a parameter 0 < ¢ < 1/2,
estimates in time O(dwe ™2 log dTw) the weight of the minimum span-
ning tree of G with a relative error of at most €. Note that the running
time does not depend on the number of vertices in G. We also prove
a nearly matching lower bound of Q(dwe~?2) on the probe and time
complexity of any approximation algorithm for MST weight.

The essential component of our algorithm is a procedure for esti-
mating in time O(de~? log g) the number of connected components of
an unweighted graph to within an additive error of en. (This becomes
O(e7?log 1) for d = O(1).) The time bound is shown to be tight up
to within the logg factor. Our connected-components algorithm picks
O(1/¢?) vertices in the graph and then grows “local spanning trees”
whose sizes are specified by a stochastic process. From the local in-
formation collected in this way, the algorithm is able to infer, with
high confidence, an estimate of the number of connected components.
We then show how estimates on the number of components in various
subgraphs of G can be used to estimate the weight of its MST.

1 Introduction

Traditionally, a linear time algorithm has been held as the gold standard of
efficiency. In a wide variety of settings, however, large data sets have become

*A preliminary version of this work appears in the proceedings of ICALP 01

Tchazelle@cs.princeton.edu. Princeton University. Part of this research was sup-
ported by NSF grant CCR-99817 and ARO Grant DAAH04-96-1-0181.

fronitt@csail.mit.edu. MIT, Cambridge, MA. Part of this work was done while the
author was at the NEC Research Institute.

$1uca®eecs.berkeley.edu. U.C. Berkeley, Berkeley, CA.

increasingly common, and it is often desirable and sometimes necessary to
find very fast algorithms which can assert nontrivial properties of the data
in sublinear time.

One direction of research that has been suggested is that of property test-
ing [16, 8], which relaxes the standard notion of a decision problem. Property
testing algorithms distinguish between inputs that have a certain property
and those that are far (in terms of Hamming distance, or some other nat-
ural distance) from having the property. Sublinear and even constant time
algorithms have been designed for testing various algebraic and combinato-
rial properties (see [15] for a survey). Property testing can be viewed as a
natural type of approximation problem and, in fact, many of the property
testers have led to very fast, even constant time, approximation schemes
for the associated problem (cf. [8, 5, 6, 1]). For example, one can approx-
imate the value of a maximum cut in a dense graph in time 20(e?log1/ e,
with relative error at most e, by looking at only O(¢~"log1/e) locations
in the adjacency matrix [8]. Other sublinear time approximation schemes
have been applied to dense instances of graph bisection, general partitioning
problems, quadratic assignement, minimum linear arrangement, maximum
acyclic subgraph and constraint satisfaction [8, 5] as well as clustering [1, 14].
Note that typically such schemes approximate the value of the optimal so-
lution, for example, the size of a maxcut, without computing the structure
that achieves it, i.e., the actual cut. Sometimes, however, a solution can
also be constructed in linear or near-linear time.

In this paper, we consider the problem of finding the weight of the min-
imum spanning tree (MST) of a graph. Finding the MST of a graph has a
long, distinguished history [3, 10, 12]. Currently the best known determinis-
tic algorithm of Chazelle [2] runs in O(ma(m,n)) time, where n (resp. m) is
the number of vertices (resp. edges) and « is inverse-Ackermann. The ran-
domized algorithm of Karger, Klein and Tarjan [11] runs in linear expected
time (see also [4, 13] for alternative models).

In this paper, we show that there are conditions under which it is possible
to approximate the weight of the MST of a connected graph in time sublinear
in the number of edges. We give an algorithm which approximates the MST
of a graph G to within a multiplicative factor of 1 + ¢ and runs in time
O(dwe =2 log d?“’) for any G with average degree d and edge weights in the
set {1,...,w}. The algorithm requires no prior information about the graph
besides w and n; in particular, the average degree is assumed to be unknown.
The relative error ¢ (0 < & < 1/2) is specified as an input parameter. Note
that if d and ¢ are constant and the ratios of the edge weights are bounded,

then the algorithm runs in constant time. We also extend our algorithm to
the case where G has nonintegral weights in the range [1,w], achieving a
comparable runtime with a somewhat worse dependence on €.

Our algorithm considers several auxiliary graphs: If G is the weighted
graph, let us denote by G the subgraph of G that contains only edges of
weight at most i. We estimate the number of connected components in each
G®. To do so, we sample uniformly at random O(1/e2) vertices in G(*),
and then estimate the size of the component that contains each sampled
vertex by constructing “local trees” of some appropriate size defined by a
random process. Based on information about these local trees, we can in
turn produce a good approximation for the weight of the MST of G. Our
algorithm for estimating the number of connected components in a graph
runs in time O(de =2 log g) —or O(e 2 log 1) for d = O(1)— and produces an
estimate that is within an additive error of en of the true count. The method
is based on a similar principle as the property tester for graph connectivity
given by Goldreich and Ron [9].

We give a lower bound of Q(dw/e?) on the time complexity of any al-
gorithm which approximates the MST weight. In order to prove the lower
bound, we give two distributions on weighted graphs, where the support set
of one distribution contains graphs with MST weight at least 1 4+ ¢ times
the MST weight of the graphs in the support of the other distribution. We
show that any algorithm that reads o(dw/e?) weights from the input graph
is unlikely to distinguish between graphs from the two distributions. We
also prove a lower bound of €(d/e?) on the running time of any approxima-
tion algorithm for counting connected components. The above lower bounds
apply to the class of graphs which may contain self-loops and multiple edges.

2 Estimating the Number of Connected Compo-
nents

We begin with the problem of estimating the number of components in an
arbitrary graph . For notational convenience, we may assume that d > 1:
this can always be achieved by implicitly adding a fictitious selfloop to each
vertex, which does not change the number of connected components. We
present an algorithm which gives an additive estimate of the number of
components in G to within en in O(de~2 log g) time, for any 0 < e < 1/2.
We later show how to use the ideas from our algorithm to aid in estimating
the weight of the MST of a graph. We use the following notation: Given a

vertex u, d,, is the number of edges incident upon it (including self-loops)
and m,, is the number of edges in u’s component in GG. Finally, ¢ denotes the
number of connected components. Our algorithm is built around a simple
observation:

Fact 1 Given a graph with vertex set V, for every connected component
ICV, Y er %du/mu =1and Y, cy %du/mu =c.

To handle isolated vertices, we must make the convention that d, /m,, =
2 if my, = 0. Our strategy is to estimate ¢ by approximating each d,/m,,.
Computing them directly could take linear time, so we construct an esti-
mator of the quantity d,/m, that has the same expected value. We ap-
proximate the number of connected components via the algorithm given in
Figure 1. The parameter W is a threshold value which is set to 4/e for
counting connected components and somewhat higher for MST weight es-
timation. We also use an estimate d* of the average degree d, which we
compute separately in O(d/e) expected time (see Lemma 4). This approxi-
mation ensures that d* = O(d/e) and that at most en/4 vertices have degree
higher than d*.

In the algorithm, doubling the number of edges does not include dupli-
cate visits to the same edges; in other words, at each phase the number of
new edges visited is supposed to match the number of distinct edges already
visited. In our terminology, the first step of the BFS (shorthand for breadth
first search) involves the visit of the single vertex u; and all its d,,, incident
edges. That is, unless d,,, > d*, in which case we abort the BF'S.

We now bound the expectation and variance of the estimator (; for a
fixed ¢. If the BFS from u; completes, the number of coin flips associated
with it is [log(m,/dy,;)] and the number of distinct edges visited is my,,.
Let S denote the set of vertices that lie in components with fewer than W
vertices all of which are of degree at most d*. If u; ¢ S, then 35; = 0;
otherwise, it is 2M1°8(mu;/du)lq, /m,, with probability 27 M°8(mu;/du:)l (and
2 if m,,, = 0) and 0 otherwise. Since f3; < 2, the variance of j; is:

2 d 4
varf, <E <2BEf ==Y <=
n my — N
ues
Then the variance of ¢ is bounded by
. n n? ne
Varc:var(g;ﬂi):@-r'varﬂi§7. (1)

approx-number-connected-components(G, e, W, d*)

uniformly choose r = O(1/¢?) vertices uq,...,u,
for each vertex u;,
set 5;, =0

take the first step of a BFS from u;

(¥) flip a coin

if (heads) & (# vertices visited in BFS < W)
& (no visited vertex has degree > d*)

then {resume BFS to double number of visited edges
if this allows BFS to complete
then {if m,, =0 set (3; =2
else set (3 = d,,27°mfliPs /2edges visited in BFS }
else go to (*) }
output ¢ = 5= i1 53

Figure 1: Estimating the number of connected components; see main text
for precise definition of BFS.

By our choice of W = 4/e and d*, there are at most en/2 components with
vertices not in S, and so

ENn

c—?gEégc. (2)

Furthermore, by Chebyshev,

var ¢ 4c

Prob{[¢ —Bé| > en/2] < oo < 5 (3)

Choosing 7 = O(1/e?) ensures that, with constant probability arbitrarily
close to 1, our estimate ¢ of the number of connected components deviates
from the actual value by at most en.

The expected number of edges visited in a given iteration of the “for
loop” is O(dy, log M), where M is the maximum number of edges visited,
which is at most Wd* = O(d/e?). Therefore, the expected running time of
the entire algorithm is

Olr) >~ dulog(Wd") = O(drlog(Wd*)) = O(de 2 log é) . @
n ueV €

not counting the O(d/e) time needed for computing d*.

As stated, the algorithm’s running time is randomized. If d is known,
however, we can get a deterministic running time bound by stopping the
algorithm after C'de~2 log g steps and outputting 0 if the algorithm has not
yet terminated. This event occurs with probability at most O(1/C), which
is a negligible addition to the error probability. Thus we have the following
theorem:

Theorem 2 Let ¢ be the number of components in a graph with n ver-
tices. Then Algorithm approx-number-connected-components runs in time
O(de2log g) and with probability at least 3/4 outputs ¢ such that |c—¢| < en.

Finetuning the Algorithm. If we proceed in two stages, first, esti-
mating ¢ within a constant factor, and then in a second pass, using this
value to optimize the size of the sample, we can lower the running time to
O((e + ¢/n)de? log g) This is a substantial improvement for small values
of c. First, run the algorithm for r = O(1/¢). By Chebyshev and (1, 2),

Eé—l—sn} 4ne 4n

Prob||c—E¢ <
o “c &> 2 < r(c+en/2)?2 = r(c+en/2)’

which is arbitrarily small for re large enough. Next, we use this approxi-
mation ¢ to “improve” the value of r. We set r = A/e + Aé/(e%n) for some
large enough constant A and we run the algorithm again, with the effect of
producing a second estimate ¢*. By (2, 3),

4c 8¢ 8
< <=,
e2rn ~ Aen+ AE¢ — A

Prob[|c® —Ec*| > en/2] <

and so, with overwhelming probability, our second estimate ¢* of the number
of connected components deviates from ¢ by at most en. So we have that

Theorem 3 Let ¢ be the number of components in a graph with n vertices.
Then there is an algorithm which runs in time O(de~2log g) and with prob-
ability at least 3/4 outputs ¢ such that |c — ¢| < en.

Approximating the Degree. We show how to compute the desired es-
timate d* of the average degree d. Pick C/e vertices of G at random, for
some large constant C, and set d* to be the maximum degree among them.
To find the degree of any one of them takes O(d) time on average, and so
the expected running time is O(d/¢). Imagine the vertex degrees sorted in
nonincreasing order, and let p be the rank of d*. With high probability,
p = O(en). To see why, we easily bound the probability that p exceeds en
by (1 —)¢/ < e=C. On the other hand, observe that the probability that
p>en/C?is at least (1 —e/C?)C/ > e2/C > 1-2/C.

Lemma 4 In O(d/¢c) expected time, we can compute a vertex degree d* that,
with high probability, is the k-th largest vertex degree, for some k = ©(en).

Note that k& = Q(en) alone implies that d* = O(d/e), and so, if we
scale € by the proper constant, we can ensure that at most en/4 vertices
have degree higher than d*, and thus conform to the requirements of approx-
number-connected-components.

3 Approximating the Weight of an MST

In this section we present an algorithm for approximating the value of the
MST in bounded weight graphs. We are given a connected graph G with
average degree d and with each edge is assigned an integer weight between
1 and w. We assume that G is represented by adjacency lists or, for that
matter, any representation that allows one to access all edges incident to a

given vertex in O(d) time. We show how to approximate the weight of the
minimum spanning tree of G with a relative error of at most €.

In Section 3.1 we give a new way to characterize the weight of the MST
in terms of the number of connected components in subgraphs of G. In
Section 3.2 we give the main algorithm and its analysis. Finally, Section 3.3
addresses how to extend the algorithm to the case where G has nonintegral
weights.

3.1 MST Weight and Connected Components

We reduce the computation of the MST weight to counting connected com-
ponents in various subgraphs of G. To motivate the new characterization,
consider the special case when G has only edges of weight 1 or 2 (i.e., w = 2).
Let G be the subgraph of G consisting precisely of the edges of weight
1, and let ny be its number of connected components. Then, any MST in
G must contain exactly n; — 1 edges of weight 2, with all the others being
of weight 1. Thus, the weight of the MST is exactly n — 2 + ni. We easily
generalize this derivation to any w.

For each 0 < ¢ < w, let G®) denote the subgraph of G consisting of all
the edges of weight at most £. Define ¢() to be the number of connected
components in G (with ¢(9 defined to be n). By our assumption on the
weights, ¢(*) = 1. Let M(G) be the weight of the minimum spanning tree of
G. Using the above quantities, we give an alternate way of computing the
value of M (G):

Claim 5 For integer w > 2,
w—1)
MG)=n—w+ Zc(z).
i=1

Proof: Let a; be the number of edges of weight 7 in an MST of G. (Note
that «; is independent of which MST we choose [7].) Observe that for all
0<l<w—1, ;0,0 =c — 1, therefore

w w—1 w w—1 w—1
M@ =Y i =S Y et S O w30
i=1 =0 i=0+1 =0 i=1

Thus, computing the number of connected components allows us to com-
pute the weight of the MST of G.

approx-MST-weight(G, ¢)
For :=1,...,w—1
¢ = approx-number-connected-com ponents(G(i) & dw/e, d*)
output 0 =n —w+ el

Figure 2: Approximating the weight of the MST

3.2 The Main Algorithm

Our algorithm approximates the value of the MST by estimating each of the
¢®’s. The algorithm is given in Figure 2. Note that we do not set W = 4/e
in the call to the connected-components algorithm. For the same reason (to
be explained below) we need a different estimate of the degree d*. We use
Lemma 4 just once to compute, in O(dw/¢e) time, an estimate d* = O(dw/¢)
such that at most en/4w vertices have degree higher than d*.

In the following, we assume that w/n < 1/2, since otherwise we might
as well compute the MST explicitly, which can be done in O(dn) time with
high probability [11].

Theorem 6 Let w/n < 1/2. Let v be the weight of the MST of G. Algo-
rithm approx-mst-weight runs in time O(dwe™? log d?“’) and outputs a value
0 that, with probability at least 3/4, differs from v by at most ev.

Proof: Let ¢ = ;”:_11). Repeating the previous analysis, we find that
(1, 2) become
; En ; . . nc(l)
22 < gl < @) and var ¢ <
2w r

By summing over i, it follows that ¢ —en/2 < E¢é¢ < ¢ and varé < ne/r,
where ¢ = Z;":—ll ¢ Choosing re? large enough, by Chebyshev we have
Inc

Probl|e — B¢l > (n—w+c)e/3] < 5 — ——

which is arbitrarily small. It follows that, with high probability, the error
on the estimate satisfies

|v—ﬁ|:|c—é|§%+wgev.

Since, by (4), the expected running time of each call to approx-number-
connected-components is O(drlog(Wd*)), the total expected running time
is O(dwe2log d?“’) As before, if we know d, then the running time can be
made deterministic by stopping execution of the algorithm after C'dwe 2 log d?“’
steps for some appropriately chosen constant C. O

3.3 Nonintegral Weights

Suppose the weights of G are all in the range [1,w], but are not necessarily
integral. To extend the algorithm to this case, one can multiply all the
weights by 1/e and round each weight to the nearest integer. Then one can
run the above algorithm with error parameter £/2 and with a new range of
weights [1, [w/e]] to get a value v. Finally, output ev. The relative error
introduced by the rounding is at most £/2 per edge in the MST, and hence
/2 for the whole MST, which gives a total relative error of at most . The
runtime of the above algorithm is O(dwe™3log 2).

4 Lower Bounds

We prove that our algorithms for estimating the MST weight and counting
connected components are essentially optimal. Our lower bounds apply to
graphs which may contain self-loops and multiple edges.

Theorem 7 Any probabilistic algorithm for approximating, with relative er-
ror g, the MST weight of a connected graph with average degree d and weights
in {1,...,w} requires Q(dwe2) edge weight lookups on average. It is as-
sumed that w > 1 and C\/w/n < e < 1/2, for some large enough constant C'.

We can obviously assume that w > 1, otherwise the MST weight is
always n — 1 and no work is required. The lower bound on ¢ might seem
restrictive but it is not at all. Indeed, by monotonicity on e, the theorem
implies a lower bound of Q(dw(C+/w/n)~2) for any ¢ < Cy/w/n. But this
is Q(dn), which we know is tight. Therefore, the case C'y/w/n < ¢ is the
only one that deserves attention.

Theorem 8 Given a graph with n vertices and average degree d, any prob-
abilistic algorithm for approximating the number of connected components
with an additive error of en requires Q(de=?) edge lookups on average. It is
assumed that C/\/n < e < 1/2, for some large enough constant C.

10

Again, note that the lower bound on € is nonrestrictive since we can
always solve the problem exactly in O(dn) time. (For technical reasons, we
allow graphs to have selfloops.)

Both proofs revolve around the difficulty of distinguishing between two
nearby distributions. For any 0 < ¢ < 1/2 and s = 0,1, let Dy denote the
distribution induced by setting a 0/1 random variable to 1 with probability
gs = q(1 + (—1)%¢). We define a distribution D on n-bit strings as follows:
(1) pick s = 1 with probability 1/2 (and 0 else); (2) then draw a random
string from {0,1}" (by choosing each b; from D] independently). Consider
a probabilistic algorithm that, given access to such a random bit string,
outputs an estimate on the value of s. How well can it do?

Lemma 9 Any probabilistic algorithm that can guess the value of s with a
probability of error below 1/4 requires Q(e72/q) bit lookups on average.

Proof: By Yao’s minimax principle, we may assume that the algorithm
is deterministic and that the input is distributed according to D. It is
intuitively obvious that any algorithm might as well scan b1bs - - - until it
decides it has seen enough to produce an estimate of s. In other words,
there is no need to be adaptive in the choice of bit indices to probe (but the
running time itself can be adaptive). To see why is easy. An algorithm can
be modeled as a binary tree with a bit index at each node and a 0/1 label at
each edge. An adaptive algorithm may have an arbitrary set of bit indices
at the nodes, although we can assume that the same index does not appear
twice along any path. Each leaf is naturally associated with a probability,
which is that of a random input from D following the path to that leaf. The
performance of the algorithm is entirely determined by these probabilities
and the corresponding estimates of s. Because of the independence of the
random b;’s, we can relabel the tree so that each path is a prefix of the
same sequence of bit probes b1bs - - -. This oblivious algorithm has the same
performance as the adaptive one.

We can go one step further and assume that the running time is the same
for all inputs. Let t* be the expected number of probes, and let 0 < a < 1
be a small constant. With probability at most «, a random input takes time
> #def /a. Suppose that the prefix of bits examined by the algorithm is
b1+ -by. If uw < t, simply go on probing b,41 ---b; without changing the
outcome. If w > ¢, then stop at by and output s = 1. Thus, by adding «
to the probability of error, we can assume that the algorithm consists of
looking up by - - - by regardless of the input string.

11

Let ps(by - - - b) be the probability that a random ¢-bit string chosen from

Dy is equal to by - - - by. The probability of error satisfies

1 .
DPerr 2 5 bzb Insln ps(bl e bt)
10t

Obviously, ps(by - - - by) depends only on the number of ones in the string, so
if ps(k) denotes the probability that by + --- + by = k, then

A
Perr Z 5 Z IIlSIIl ps(k)' (5)
k=0

By the normal approximation of the binomial distribution,

2
ps(k) — 1 e_ Zgiséqjés)7
2mtqs(1 — qs)

as t — oo. This shows that ps(k) = Q(1/+/qt) over an interval I, of length
Q(\/qt) centered at tgs. If gte? is smaller than a suitable constant ~yg, then
|tgo — tq1] is small enough that Iy N I; is itself an interval of length Q(+/qt);
therefore pery = 2(1). This shows that if the algorithm runs in expected time
y0e~2/q, for some constant g > 0 small enough, then it will fail with prob-
ability at least some absolute constant. By setting « small enough, we can
make that constant larger than 2a. This means that, prior to uniformizing
the running time, the algorithm must still fail with probability a.

Note that by choosing ~y small enough, we can always assume that
a > 1/4. Indeed, suppose by contradiction that even for an extremely small
71, there is an algorithm that runs in time at most v;e72/q and fails with
probability < 1/4. Then run the algorithm many times and take a majority
vote. In this way we can bring the failure probability below « for a suitable
v = 71(a,7) < 70, and therefore reach a contradiction. This means that
an expected time lower than €~2 /¢ by a large enough constant factor causes
a probability of error at least 1/4. O

Proof (Theorem 8): Consider the graph G consisting of a simple cycle of n
vertices vy, ..., v,. Pick s € {0,1} at random and take a random n-bit string
by - - - by, with bits drawn independently from Dj /2° Next, remove from G any
edge (i, Vi+1modn) if b; = 0. Because £ > C'/\/n, the standard deviation of
the number of components, which is ©(y/n), is sufficiently smaller than en
so that with overwhelming probability any two graphs derived from D? /2 and

12

D% /2 differ by more than en/2 in their numbers of connected components.
That means that any probabilistic algorithm that estimates the number of
connected components with an additive error of en/2 can be used to identify
the correct s. By Lemma 9, this requires Q(¢~2) edge probes into G' on
average. Replacing € by 2¢ proves Theorem 8 for graphs of average degree
about 1.

For values of d smaller than one, we may simply build a graph of the
previous type on a fraction d of the n vertices and leave the others isolated.
The same lower bound still holds as long as de?n is bigger than a suitable
constant. If d > 1, then we may simply add d+O(1) selfloops to each vertex
in order to bring the average degree up to d. Each linked list thus consists of
two “cycle” pointers and about d “loop” ones. If we place the cycle pointers
at random among the loop ones, then it takes 2(d) probes on average to hit
a cycle pointer. If we single out the probes involving cycle pointers, it is not
hard to argue that the probes involving cycle pointers are, alone, sufficient
to solve the connected components problem on the graph deprived of its
loops: one expects at most O(T/d) such probes and therefore T' = Q(de~2).
Od

Proof (Theorem 7): The input graph G is a simple path of n vertices. Pick
s € {0,1} at random and take a random (n — 1)-bit string by - - - b,—1 with
bits drawn independently from Dy, where ¢ = 1/w. Assign weight w (resp.
1) to the i-th edge along the path if b = 1 (resp. 0). The MST of G has
weight n — 1+ (w — 1) 3" b;, and so its expectation is ©(n). Also, note that
the difference A in expectations between drawing from Dg or D; is O(en).

Because ¢ > C'y/w/n, the standard deviation of the MST weight, which
is ©(y/nw), is sufficiently smaller than A that with overwhelming proba-
bility any two graphs derived from Dg and D; differ by more than A/2
in MST weight. Therefore, any probabilistic algorithm that estimates the
weight with a relative error of /D, for some large enough constant D, can
be used to identify the correct s. By Lemma 9, this means that Q(wes=?2)
probes into GG are required on average.

In this construction, d = 2 — 2/n (the smallest possible value for a
connected graph). For higher values of d, we join each vertex in the cycle
to about d — 2 others (say, at distance > 2 to avoid introducing multiple
edges) to drive the degree up to d. Also, as usual, we randomize the ordering
in each linked list. Assign weight w + 1 to the new edges. (Allowing the
maximum weight to be w + 1 instead of w has no influence on the lower
bound we are aiming for.) Clearly none of the new edges are used in the

13

MST, so the problem is the same as before, except that we now have to
find our way amidst d — 2 spurious edges, which takes the complexity to
Q(dwe=2). O

5 Open Questions

Our algorithm for the case of nonintegral weights requires extra time. Is
this necessary? Can the ideas in this paper be extended to finding maxi-
mum weighted independent sets in general matroids? There are now a small
number of examples of approximation problems that can be solved in sublin-
ear time; what other problems lend themselves to sublinear approximation
schemes? More generally, it would be interesting to gain a more global
understanding of what can and cannot be approximated in sublinear time.

Acknowledgments

We wish to thank David Silver for his helpful comments about the paper
and for implementing the minimum spanning tree algorithm and showing
that it works well in practice. We also thank the referees for many useful
suggestions.

References

[1] Alon, N., Dar, S., Parnas, M., Ron, D. Testing of clustering, Proc.
FOCS, 2000.

[2] Chazelle, B. A minimum spanning tree algorithm with inverse-
Ackermann type complezity, J. ACM, 47 (2000), 1028-1047.

[3] Chazelle, B. The Discrepancy Method: Randomness and Complexity,
Cambridge University Press, 2000.

[4] Fredman, M.L., Willard, D.E. Trans-dichotomous algorithms for min-
imum spanning trees and shortest paths, J. Comput. and System Sci.,
48 (1993), 424-436.

[5] Frieze, A., Kannan, R. Quick approxzimation to matrices and applica-
tions, Combinatorica, 19 (1999).

14

[6]

[7]

8]

Frieze, A., Kannan, R., Vempala, S. Fast monte-carlo algorithms for
finding low-rank approximations, Proc. 39th FOCS (1998).

Gale, D. Optimal assignments in an ordered set: an application of ma-
troid theory, J. Comb. Theory 4 (1968), 176-180.

Goldreich, O., Goldwasser, S., Ron, D. Property testing and its connec-
tion to learning and approximation, Proc. 37th FOCS (1996), 339-348.

Goldreich, O., Ron, D. Property testing in bounded degree graphs, Al-
gorithmica 32 (2002), 302-343.

Graham, R.L., Hell, P. On the history of the minimum spanning tree
problem, Ann. Hist. Comput. 7 (1985), 43-57.

Karger, D.R., Klein, P.N, Tarjan, R.E. A randomized linear-time algo-
rithm to find minimum spanning trees, J. ACM, 42 (1995), 321-328.

Nesetiil, J. A few remarks on the history of MST-problem, Archivum
Mathematicum, Brno 33 (1997), 15-22. Prelim. version in KAM Series,
Charles University, Prague, No. 97-338, 1997.

Pettie, S., Ramachandran, V. An optimal minimum spanning tree al-
gorithm, Proc. 27th ICALP (2000).

Mishra, N., Oblinger, D., Pitt, L., Sublinear time approzimate cluster-
ing, Proc. Symposium on Discrete Algorithms, 2001.

Ron, D. Property testing (a tutorial), to appear in “Handbook on Ran-
domization.”

Rubinfeld, R., Sudan, M. Robust characterizations of polynomials with
applications to program testing, STAM J. Comput. 25 (1996), 252-271.

15

