Testing Properties of Directed Graphs: Acyclicity and Connectivity*

Michael A. Benderf Dana Ront
SUNY Stony Brook Tel Aviv University

Abstract

This paper initiates the study of testing properties of directed graphs. In particular, the
paper considers the most basic property of directed graphs — acyclicity. Because the choice
of representation affects the choice of algorithm, the two main representations of graphs are
studied. For the adjacency-matrix representation, most appropriate for dense graphs, a testing
algorithm is developed that requires query and time complexity of O(l /€?), where € is a distance
parameter independent of the size of the graph. The algorithm, which can probe the adjacency
matrix of the graph, accepts every graph that is acyclic, and rejects, with probability at least
2/3, every graph whose adjacency matrix should be modified in at least € fraction of its entries
so that it becomes acyclic. For the incidence list representation, most appropriate for sparse
graphs, an Q(|V|*/3) lower bound is proved on the number of queries and the time required for
testing, where V is the set of vertices in the graph.

Along with acyclicity, this paper considers the property of strong connectivity. Contrasting
upper and lower bounds are proved for the incidence list representation. In particular, if the
testing algorithm can query on both incoming and outgoing edges at each vertex, then it is
possible to test strong connectivity in O(1/€) time and query complexity. On the other hand,
if the testing algorithm only has access to outgoing edges, then Q(v/N) queries are required to
test for strong connectivity.

Keywords: Property Testing, Directed acyclic graphs, Randomized algorithms, Approximation
algorithms, Graph algorithms.

*An earlier version of this paper was presented at the 27th International Colloquium on Automata, Languages,
and Programming (ICALP 2000).

tDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400,
USA. Email: bender@cs.sunysb.edu. Supported in part by HRL Laboratories, the ISX Corporation, and Sandia
National Laboratories.

tDepartment of Electrical Engineering — Systems, Tel Aviv University, Ramat Aviv, Israel. Email:
danar@eng.tau.ac.il. Supported by the Israel Science Foundation, grant number 32/00-1.

1 Introduction

THE PROBLEM. Deciding whether a graph is acyclic is one of the basic algorithmic questions
on directed graphs. It is well known that this problem can be solved by depth first search in
time linear in the size of the graph. A natural generalization of this problem is asking how close
to acyclic is a given graph. That is, what is the minimum number of edges (or vertices) that
should be removed from the graph so that there are no remaining directed cycles. This problem
is known as the minimum feedback arc (or vertex) set problem. Unfortunately, this problem is
NP-hard [26] and even APX-hard [25]. Consequently researchers have developed approximation
algorithms in various settings (including studying the complementary problem of the mazimum
acyclic subgraph) [12, 17, 32, 28, 8, 22, 3, 14].

TESTING GRAPH PROPERTIES. The field of Testing Graph Properties [19] suggests an alternate
framework with which to study the above problem, and this is the approach that we take in this
paper. A property tester determines whether a graph G = (V,E) has a given property or is far
from having the property. More formally, Testing Graph Properties is the study of the following
family of tasks. Let P be a predetermined graph property (such as acyclicity, connectivity, or
3-colorability). A testing algorithm for property P is given access to a graph G so it can query the
incidence relationships between vertices. If G has property P then the algorithms should accept
with probability at least 2/3. If many edge modifications should be performed so that G has the
property, then the algorithm should reject with probability at least 2/3. The success probability of
the algorithm can clearly be amplified by repetitions to be arbitrarily close to 1.

We thus relax the task of deciding ezactly whether the graph has the property, but expect of
the algorithm to perform its task by observing as few vertices and edges in the graph as possible.
Specifically, we are only willing to spend time that is sublinear in or even independent of the
size of the graph. Thus, in contrast to the standard notion of graph algorithms, property testing
algorithms are not provided the whole graph and required to run in time polynomial in the size
of the graph. Rather, they are provided access to the graph and are expected to run in sublinear

time.

More concretely, in this paper we study the question of whether a graph G is acyclic or far from
acyclic. If the graph is far from acyclic (that is, many edges should be removed so that no cycle
remains), then the tester should reject; if the graph actually is acyclic, the tester should accept; if
the graph is nearly acyclic, then the tester may answer either way. Thus, we excuse the tester from
answering the most difficult instances correctly, but we require the tester to execute much more
quickly then any exact decision algorithm.

ALTERNATE NOTION OF APPROXIMATION. In view of the above, property testing suggests an
alternative notion of approximation that is related to the notion of dual approzimation [23, 24]. An
approximation algorithm is a mechanism that trades accuracy for speed. Given an optimization
problem that associates costs with solutions, the more standard notion of approximation is to find

a solution that is close to the cost of the optimal solution. By “close,” we mean that the value
found is within some multiplicative factor of the optimal cost.

A property tester also trades accuracy for speed, but may use a different notion of distance.
Specifically, distance is measured in terms of the number of edge insertions and deletions necessary
to obtain a particular property (which, in particular, may be having a solution with a given cost).

The following example illustrates the two notions of distance. A graph G might be nearly 3-
colorable in the sense that there is a 3-colorable graph G’ at small edit distance to G, but far from
3-colorable in the sense that many colors are required to color G. Alternatively, a graph G might
be nearly 3-colorable in the sense that it is 4-colorable, but far from 3-colorable in the sense that no
graphs having small edit distance to G are 3-colorable. Both notions are natural and the preferred
choice depends on the context. In some cases the two notions coincide (e.g., Max-Cut [19]).

APPLICATIONS. A graph-property tester may be employed in several contexts. (1) A fast property
tester can be used to speed up the slow exact decision procedure as follows. Before running the
slow decision procedure, run the tester. If the fast inexact tester rejects, then we know with high
confidence that the property does not hold and it is unnecessary to run the slow tester. In fact,
it is often the case that when the testing algorithm rejects, it provides a witness that the graph
does not have the property (in our case, a cycle). If the fast inexact tester accepts, then a slow
exact decision procedure will determine whether the property is close to holding or actually holds.
(2) There are circumstances in which knowing that a property nearly holds is good enough and
consequently exact decision is unnecessary. (3) It may even be NP-hard to answer the question
exactly, and so some form of approximation is inevitable.

IMPACT OF GRAPH REPRESENTATION. We now define precisely the notion of distance and how
the tester actually probes the graph. In fact, there are two traditional representations for graphs,
adjacency matrices and incidence lists. The choice of representation strongly affects these issues, as
well as the applicable algorithmic techniques. We summarize the properties of each representation
here.

e Adjacency-Matriz Model. Goldreich, Goldwasser, and Ron [19] consider the adjacency-matrix
representation of graphs, where the testing algorithm is allowed to probe into the matrix. That
is, the algorithm can query whether there is an edge between any two vertices of its choice. In
the undirected case the matrix is symmetric, whereas in the directed case it may not be. In this
representation the distance between graphs is the fraction of entries in the adjacency matrix on
which the two graphs differ. By this definition, for a given distance parameter €, the algorithm
should reject every graph that requires more than ¢ - [V|? edge modifications in order to acquire
the tested property. This representation is most appropriate for dense graphs, and the results
for testing in this model are most meaningful for such graphs.

Tn the case of acyclicity, the notion of distance in the context of property testing and the cost approximated in
the minimum feedback arc set problem are in fact the same. However, the two problems do differ mainly because the
former is a “promise” problem and so nothing is required of the algorithm in case the graph is close to acyclic.

e (Bounded-Length) Incidence-Lists Model. Goldreich and Ron [20] consider the incidence-lists
representation of graphs. In this model, graphs are represented by lists of length d, where d is a
bound on the degree of the graph. Here the testing algorithm can query, for every vertex v and
index i € {1,...,d}, which is the i’th neighbor of v. If no such neighbor exists then the answer
is ‘0’. In the case of directed graphs each such list corresponds to the outgoing edges from a
vertex.? Analogously to the adjacency matrix model, the distance between graphs is defined to
be the fraction of entries on which the graphs differ according to this representation. Since the
total number of incidence-list entries is d-| V|, a graph should be rejected if the number of edges
modifications required in order to obtain the property is greater than ¢ - d[V|. 3

TECHNIQUES. The applicable techniques depend on the choice of representation. A central tech-
nique that is used for the adjacency matriz representation is random sampling. Specifically, as
in this paper, the algorithm randomly selects a small set U of vertices from the graph G, finds
the edges interconnecting the vertices, and determines whether the property holds for the small
subgraph induced by U. If so, then the algorithm accepts. If not, the algorithm rejects. Often the
crux of the proof is in showing that if a graph is far from having the property, then it contains
many (very small) subgraphs that do not have the property.

The incidence-lists representation requires a different set of techniques, more applicable to sparse
graphs. Specifically, because the graphs have few edges, a small random sample of vertices typically
has no edges internal to the sample, that is, it is just the empty graph. Thus, past algorithms for
this setting use additional techniques besides pure random sampling. In particular, some algorithms
apply various forms of exhaustive local search (such as performing a breadth-first-search until a
particular number of vertices are observed) [20, 29]. Other algorithms use random walks starting
from randomly selected vertices [21].

TESTING DIRECTED GRAPHS. This paper studies property testing for directed graphs. Typically,
a given problem on a directed graph is more difficult than the same problem on an undirected

graph. In particular, testing acyclicity of undirected graphs in the adjacency-matrix representation

2
. . . |V|

polynomial in 1/e by looking at the whole graph). The basic observation is that any graph having

is straightforward: Assume € > (or otherwise it is possible to make an exact decision in time
at most €|V|? edges is nearly acyclic (because it is e-close to the empty graph), while only very
sparse graphs (having at most [V| — 1 < §|V|? edges) may be acyclic. Hence the algorithm can
estimate the number of edges in the graph by sampling, and accept or reject based on this estimate.
Testing acyclicity of undirected graphs in the incidence-list (bounded-degree) representation, is
more interesting and is studied in [20]. However, this result does not extend to testing directed
graphs.

2 Actually, the lower bound we prove for this model holds also when the algorithm can query about the incoming
edges to each vertex (where the number of incoming edges is bounded as well). We note that allowing to query about
incoming edges can make testing strictly easier.

3 A variant of the above model allows the incidence lists to be of different lengths [29]. In such a case, the distance
is defined with respect to the total number of edges in the graph.

OUuR REsuLTS. We first consider the problem of testing acyclicity in the adjacency matrix represen-
tation. We describe a tester whose query complexity and running time are independent of the size
of the graph and polynomial in the given distance parameter e. Specifically, the query complexity

and running time are both O (logi#) As mentioned above, the algorithm works by randomly

and uniformly selecting a set of O(1/€) vertices, and verifying whether the small subgraph induced
by these vertices is acyclic. Thus, an acyclic graph is always accepted, and for all rejected graphs,

“witness” that the graph is not acyclic in the form of a short cycle. A

the algorithms provides a
key (combinatorial) lemma used in proving the correctness of the algorithms shows that a graph
that is far from acyclic contains a relatively large subset of vertices for which every vertex in the
subset has many outgoing edges extending to other vertices in the subset. We then show that a

sample of vertices from within this subset likely induces a subgraph that contains a cycle.

We next turn to the problem of acyclicity testing in the incidence-lists representation. We
demonstrate that the problem is significantly harder in this setting. Specifically, we show an
Q(|V|*/3) lower bound on the number of queries required for testing in this setting. To prove
the bound we define two families of directed graphs — one containing only acyclic graphs and one
containing mostly graphs that are far from acyclic. We show that Q(|V|'/3) queries are required in
order to determine from which family a randomly selected graph was chosen.

It appears that the techniques used in testing undirected graphs in the incidence-lists repre-
sentation, cannot be applied directly to obtain an efficient acyclicity testing algorithm for directed
graphs. Consider a graph that contains a relatively large subgraph that is far from acyclic, but
such that many edges connect this subgraph to acyclic regions of the graph. By our lower bound,
any testing algorithm should perform many queries concerning edges within this subgraph (to dis-
tinguish it from the case in which the subgraph is acyclic). However, both exhaustive local searches
and random walks will “carry the algorithm away” to the acyclic regions of the graph. It would be
=)

interesting to develop an acyclicity tester that uses O(|V queries, for any o > 0.

TESTING OTHER PROPERTIES OF DIRECTED GRAPHS. As noted in [19, Subsection 10.1.2], some
of the properties studied in that paper (in the adjacency matrix model) have analogies in directed
graphs. Furthermore, the algorithms for testing these properties can be extended to directed graphs.
In particular, these properties are defined by partitions of the vertices in the graph with certain
constraints on the sizes of the sets in the partition as well as on the density of edges between
these sets. The techniques of [1] (for testing properties of undirected graphs in the adjacency-
matrix representation), can also be extended to testing properties of directed graphs (Private
communications with Noga Alon).

Another basic property of directed graphs, is (strong) connectivity. Namely, a directed graph
is strongly connected if there is a directed path in the graph from any vertex to any other vertex.
Testing this property is most meaningful in the incidence-lists model, as every graph can be made
strongly connected by adding at most 2N directed edges. The undirected version of this problem
is studied in [20], where an algorithm having query and times complexities O(1/€) is presented
and analyzed. As we show in Section 5, this algorithm can be extended to the directed case if

the algorithm can also perform queries about the incoming edges to each verter. Otherwise, (the
algorithm can only perform queries about outgoing edges), a lower bound of Q(+v/N) on the number
of queries can be obtained.

RELATED WORK. Property testing of functions was first explicitly defined in [31] and extended
in [19]. Testing algebraic properties (e.g., linearity or being a polynomial of low-degree) plays an
important role in the settings of Program Testing (e.g., [9, 31, 30]) and Probabilistically-Checkable
Proof systems (e.g., [7, 6, 13, 5, 4]). As mentioned previously, the study of testing graph properties
was initiated in [19], where, in particular, the adjacency-matrix model was considered. Some of
the properties studied in that work are bipartitness, k-colorability, having a clique of a certain size
and more. In [20], testing properties of graphs represented by their incidence lists was considered.
Some of the the properties studied in that work are k-connectivity and acyclicity.

Ergun et. al. [11] give a poly(1/e)-time algorithm for testing whether a relation is a total order.
This can be viewed as a special case of testing acyclicity in the adjacency-matrix model, where it
is assumed that a directed edge exists between every two vertices.

Other papers concerning testing of graph properties and other combinatorial properties in-
clude [21, 11, 27, 18, 10]. Recently, Alon et. al. [1] presented a general family of graph properties
that can be tested using a sample that is independent of the size of the graph (though the depen-
dence on the distance parameter e is somewhat high). In [2] it is shown that all properties defined
by regular languages can be tested using a sample of size almost linear in the distance parameter.

As mentioned previously, the related minimum feedback set problem is APX-Hard [25], and its
complementary, maximum acyclic subgraph is APX-Complete [28]. The former can be approxi-
mated to within a factor of O(log|V| loglog|V|) [12], and the latter to within 2/(1 + Q(1/vA))
where A is the maximum degree [8, 22]. Variants of these problems are studied in the following
papers [32, 17, 3]. Perhaps the result most closely related to our work is that of Frieze and Kan-
nan [14]. They show how to approximate the size of the maximum acyclic subgraph to within an
additive factor of €[V|2, in time exponential in 1/e. In comparison to their result, we solve a more
restricted problem in time polynomial in 1/e as opposed to exponential. In addition, since our
analysis is tailored to the particular problem (as opposed to theirs which follows from a general
paradigm that gives rise to a family of approximation algorithms), it may give more insight into
the problem in question.

With the current trend of increasing memory and storage sizes, the problem of examining
large structures in sublinear time has been studied in other contexts. For example, Gibbons and
Matias [15, 16] develop a variety of data structures that glean information from large databases so
they can be examined in sublinear time.

ORGANIZATION. This paper is organized as follows: In section 2 we present definitions and ter-
minology that will be used in the rest of the paper. In Section 3 we preset a property tester for
the incidence-lists representation. In Section 4 we present a lower bound on the number of queries
required for property testing in the adjacency-matrix representation. In Section 5 we consider the

problem of testing the property of stong connectivity.

2 Definitions

Let G = (V,E) be a directed graph, where |V| = N, and E C V x V consists of ordered pairs of
vertices. For a given set of vertices U C V, let G(U) denote the subgraph of G induced by U, and
for any two sets of vertices U; and Uy, let E(Up, Us) denote the set of edges going from vertices in
U; to vertices in Uy. That is, E(Uy, Us) def {(u1,u2) € E: uy € Uy, ug € Us}.

We say that a graph G is acyclic if it contains no directed cycles. In other words, G is acyclic
if and only if there exists a (one-to-one) ordering function ¢ : V+— {1,..., N}, such that for every
(v,u) € E, ¢(v) < ¢(u). We say that an edge (v,u) € E is a violating edge with respect to an
ordering ¢(-), if ¢(v) > ¢(u).

We consider two representations of (directed) graphs. In the adjacency-matriz representation, a
graph G is represented by a 0/1 valued N x N matrix Mg, where for every pair of vertices u,v € V,
Mg[u,v] = 1 if and only if (u,v) € E. This representation is more appropriate for dense graphs
than sparse graphs, because with sparse graphs the representation entails a large space wastage.
In the incidence-lists representation, a graph G is represented by an N x d matrix L¢, (which can
be viewed as N lists), where d is a bound on the outdegree of each vertex in G. For v € V and
i € [d], Lg[v,i] = u, if an only if the i’th edge going out of v is directed to w. If such an edge does
not exist then the value of the entry is ‘0’.

For any 0 < e < 1, a graph G in either of the two representations, is said to be e-close to acyclic,
if at most an e-fraction of entries in G’s representation need to be modified to make G acyclic. If
more than an € fraction of entries must be modified, than it is e-far from acyclic. Because the
adjacency-matrix representation has size N2, this means that a graph G in the adjacency-matrix
representation is e-close to being acyclic if at most € - N? edges can be removed to make G acyclic.
Because the incidence-lists representation has size d- N, the number of edges that should be removed
in this representation is at most € - dIN. Note that a graph is e-close to acyclic if and only if there
exists an order function ¢(-), with respect to which there are at most eN? (similarly, € - dN),
violating edges.

A testing algorithm for acyclicity is given a distance parameter e, and oracle access to an
unknown graph G. In the adjacency-matrix representation this means that the algorithm can
query for any two vertices u and v whether (u,v) € E. In the incidence-lists representation this
means that the algorithm can query, for any vertex v and index ¢ € [d], what vertex does the
1’'th edge going out of v point to. If the graph G is acyclic then the algorithm should accept
with probability at least 2/3, and if it is e-far from acyclic then the algorithm should reject with
probability at least 2/3.

3 Testing Acyclicity in the Adjacency-Matrix Representation

We next give our algorithm for testing acyclicity when the graph is represented by its adjacency
matrix. Similarly to several previous testing algorithms in the (un-directed) adjacency-matrix
model, the algorithm is the “natural” one. Namely, it selects a random subgraph of G (having only
O(1/€) vertices), and checks whether this subgraph is acyclic (in which case it accepts) or not (in
which case it rejects). Observe that the sample size is independent of the size of G.

Acyclicity Testing Algorithm
1. Uniformly and independently select a set of ©(log(1/€)/€) vertices and denote the set by U.

2. For every pair of vertices vi,v9 € U, query whether either (v1,v2) € E or (ve,v1) € E, thus
obtaining the subgraph G(U) induced by U.

3. If G(U) contains a cycle, then reject, otherwise accept.

Theorem 1 The algorithm described above is a testing algorithm for acyclicity having query and
time complexity 0(1/62). Furthermore, if the graph G is acyclic it is always accepted, and whenever
the algorithm rejects a graph it provides a certificate of the graph’s cyclicity (in the form of a short
cycle).

The bound on the query and time complexity of the algorithm follows directly from the descrip-
tion of the algorithm. In particular, there are O(log?(1/€)/€?) pairs of vertices in U, which limits
the number of queries made as well as the number of edges in G(U). To verify whether G(U) is
acyclic or not, a Depth-First-Search (DFS) can be performed. The time complexity of this search
is bounded by the number of edges in G(U), as desired. The second statement in the theorem
is immediate as well. It remains to be shown that every graph that is e-far from being acyclic is
rejected with probability at least 2/3.

PrOOF IDEA. We prove Theorem 1 using two lemmas. Lemma 2 shows that if a graph G is
far from acyclic, then G contains a relatively large set W such that each vertex in W has many
outgoing edges to other vertices in W. (In fact, as we showed in an earlier version of this paper,
every vertex in W also has many incoming edges from other vertices in W. However, we no longer
need this stronger property.) Lemma 3 shows that if we uniformly select a sufficient number of
vertices from W, then with probability at least 9/10 the underlying graph induced by these vertices
contains a cycle. To prove Theorem 1, we show that with sufficiently high probability, a large
enough constant-size sample of vertices in G contains enough vertices in W to find a cycle with the
desired probability.

DEFINITIONS. To formalize the above ideas, we use the following definitions. For any vertex v € V,
def

let O(v) = {u: (v,u) € E} be the set of v’s outgoing edges. Given a set W C V, we say that v has
low outdegree with respect to W, if |O(v) N W| < §N; otherwise it has high outdegree with respect

to W.

Lemma 2 If G is e-far from acyclic, then there ezists a set W C V, such that [W| > \/gN, and
every verter v € W has high outdegree with respect to W.

Lemma 3 Let W C 'V be a set of vertices such that for every v € W, |O(v) "W| > €'|W| for some
0 < € <1/2. Suppose we uniformly and independently select ©(log(1/€')/€') vertices in W. Then
with probability at least 9/10 (over this selection) the subgraph induced by these vertices contains a
cycle.

We prove the two lemmas momentarily, but first we show how Theorem 1 follows from the two

lemmas.

Proof of Theorem 1: If G is acyclic, then clearly it always passes the test. Thus, consider the
case in which G is e-far from acyclic. By Lemma 2, there exists a set W C V, such that |[W| > \/gN ,

and every v € W has high outdegree with respect to W. Let « def |W|/N be the fraction of graph
vertices that belong to W, so that o > \/g By applying a (multiplicative) Chernoff bound we
have that for every integer m > 12, with probability at least 9/10, a uniformly and independently
selected sample of 2m/« vertices contains at least m (not necessarily distinct) vertices in W (where
these vertices are uniformly distributed in W). Assume this is in fact the case (where we account

for the probability of error and set m below).

Let ¢ % min{1/2, 5=} so that by definition of «, for every v € W, |O(v) N W| > €'|W|. By

setting the quantity m to be O(log(1/€')/€'), and applying Lemma 3, we obtain that conditioned
on there being m elements in the sample that belong to W, a cycle is observed with probability

at least 9/10. Adding the two error probabilities, and noting that the total size of the sample is
O(m/a) = O(log(1/€)/€), the theorem follows. MW

Now that we have demonstrated how Theorem 1 follows from Lemmas 2 and 3, we prove the
lemmas themselves.

Proof of Lemma 2: We prove the contrapositive of the statement in the lemma: If such a set
W does not exist, then the graph is e-close to being acyclic. In other words, we show that if for
every subset Z C V having size at least /5N, there exists at least one vertex in Z having small
outdegree with respect to Z, then the following holds. There exists an order ¢ : V — [N], and a set
of edges T of size at most eN?, such that the edges of T are the only violating edges with respect
to ¢.

We define ¢ and construct T in NV steps. At each step we select a vertex v for which ¢ is not
yet determined, and set the value of ¢(v). We maintain an index £ (last), where initially £ = N. At
the start of a given step, let Z C V denote the set of vertices for which ¢ is yet undefined (where
initially, Z = V). As long as |Z| > \/gN , we do the following. Consider any vertex v that has
low outdegree with respect to Z (where the existence of such a vertex is ensured by our (counter)
assumption). Then we set ¢(v) = £, decrease £ by 1, and let T <~ TU {(v,u) € E: u € Z}. Hence,
at each step, the size of T increases by at most §N.

Finally, when |Z| < \/gN , so that the vertices in Z may all have high outdegree with respect
to Z, we order the vertices in Z arbitrarily between 1 and ¢, and add to T all (at most |Z* < SN?)
edges between vertices in Z. Thus, the total number of edges in T is bounded by eN?, as desired.

It remains to show that there are no other violating edges with respect to ¢. Namely, for every
(v,u) € E\ T, it holds that ¢(v) < ¢(u). Consider any such edge (v,u) € E\ T. We claim that
necessarily the value of ¢ was first defined for u, implying that in fact ¢(v) < ¢(u) (as the value £
given by ¢) decreases as the above process progresses). This must be the case since otherwise, if
the value of ¢ was first defined for v then the edge (v, u) would have been added to T, contradicting
our assumption that (v,u) e E\T. W

Proof of Lemma 3: Let m = %}/a) + 1 be the number of vertices selected (uniformly and
independently) from W, where c is a constant that is set below. We show that with probability at
least 9/10 over the choice of such a sample U, for every vertex v € U, there is another vertex u € U
such that (v,u) € E. This implies that the subgraph induced by U has no sink vertex, and hence
contains a cycle.

Let the m vertices selected in the sample U be denoted v1,...,v,,. For each index 1 < i < m,
let & be the event that there exists a vertex v; such that (v;,v;) € E. In other words, &; is the
(desirable) event that v; has non-zero outdegree in the subgraph induced by U. We are interested
in providing an upper bound on the probability that there exists an index %, such that the event
&i does not hold, that is, that Pr[|J;~; =&;]. Since the vertices in the sample are chosen uniformly
and independently, and every vertex in W has outdegree at least ¢ - |W|, for each fixed 7,

Pr[-&] < (1—€)™" < exp(—(m —1)¢') = exp(—cIn(1/€')) = (¢')°. (1)

By applying a probability union bound,

Pr lU =&;

i=1

< iPr[ﬂ&] < (C'lne(ll/fl) + 1) - (€)°. (2)
i=1

Setting ¢ to be a sufficiently large constant (say, ¢ > 10), for any ¢ < 1/2 the above probability is
at most 1/10 as required. W

The Proof of Lemma 3 concludes the analysis of our algorithm for testing acyclicity in the
adjacency-matrix representation. In the next section we consider the same problem in the incidence-
lists representation, and we show that the problem has a very different complexity.

4 Testing Acyclicity in the Incidence-Lists Representation

In this section we prove a lower bound of Q(N 1 3) for testing acyclicity in the incidence-lists
representation, when d and € are constant. This lower bounds holds even when the algorithm may
query about the incoming edges to each vertex (where the indegree of each vertex is also at most
d). We conjecture that the problem is even harder than this lower bound suggests and discuss the

10

Figure 1: Top: The structure of a representative graph in the family G;. All graphs in G; are acyclic. Bottom:
The structure of a representative graph in the family Go. Almost all graphs in G2 are far from acyclic. (Note that
for ease of presentation, the vertices in S; are doubly represented in the top row and in the bottom row.)

hardness further at the end of this section. The question of how to obtain a formal argument for a
higher lower bound remains as an open problem.

Theorem 4 Testing Acyclicity in the incidence-lists representation with distance parameter € < 11—6,
requires more than % - N3 queries.

To prove the bound we define two families of (directed) graphs, G; and Gy, each over N vertices,
with degree bound d. All graphs in G; are acyclic, and almost all graphs in Go are e-far from acyclic
(for e = 1—16) We then show that no algorithm can distinguish between a graph chosen randomly
in G; and a graph chosen randomly in G in less than o - N/3 queries, for 0 < o < %. The families
are defined as follows (see Figure 1).

e Fach graph in G; consists of K = N1/3 layers, Li,...,Lg, each having M = N2/3 vertices.
From each layer L; there are d - |L;| = d - M edges going to layer L;,1, where these edges are
determined by d matchings between the the vertices in the two layers.

e FKach graph in Gs consists of two equal-size subsets of vertices, S; and So. There are d - % edges
going from S; to Sg, and d- % edges going from S to S;. The two sets of edges are each defined
by d matching between S; and S,.

In both cases, every edge has the same label at both its ends (determined by the matching).

Clearly, all graphs in G; are acyclic. We next show that almost all graphs in Gy are far from acyclic.

11

Lemma 5 For every N > d > 128, with probability at least 1 — 27, a randomly selected graph in
Ga is e-far from acyclic, for e = 1/16.

Proof: Consider all orderings ¢ : V — N, and let us partition them into classes as follows. Each
class is defined by an equal partition (V/,V¥) of V, where each ordering ¢ in the class maps the
vertices in V/ to {1,..., N/2} and the vertices in V¢ to {N/2+1,...,N}. For a given fixed partition
(VF, V%) we show that the probability that a random graph in G, has less than edN edges going
from vertices in V¢ to vertices in VI (i.e., in violation of each ordering in the class), is at most
272N Tt follows that the probability that some ordering, belonging to any one if the classes, has
less than edN violating edges is bounded by 2~V as desired. Details follow.

A random graph in G, is chosen by selecting d random matchings corresponding to edges
going from S; to So, and d random matching corresponding to edges going form Sy to Si. Let
V{ def v n S1, and let Vg , V¢, and V§ be defined analogously. Without loss of generality, assume
|V{| > | V¥, so that |V{\ > N/4 (since |V{|+|V{| = |S1| = N/2). Note that since \V{\—HV£| = N/2,
it holds that [V4| = [V{| > N/4 as well. We show that with exponentially high probability there
are at least edN edges extending from vertices in V§ to vertices in V{ (and for simplicity we ignore

the contribution of edges going from V¥ to V{)-

Consider a single random matching. Such a matching can be determined by a choice of a
random subset T; C S; of size |[V%|, and two random matchings: one between the vertices of
Vg and the vertices T, and one between Vg and S; \ T;. We next bound the probability that
IT; N V| < N/8, that is, that there are less then N/8 edges in this matching that go from V¥ to
V{. Since |V§| = |[V/| > N/4, which is half the size of S, the probability that |T; N V| < N/8
decreases as |V§| increases. Hence it suffices to analyze the case |V§| = |V{c | = N/4. Furthermore,
for any integer i« < N/8, the probability that in choosing N/4 elements without repetitions from
Si, the number of elements selected from V{ is 4, is an upper bound on the probability that
such a number of elements are selected when repetitions are allowed. (The former probability is

N/2 . N/2 N/2
(7)) (1) /
%N)ﬂ_l 5n7s -) Hence, the probability that [Ty N'Vi| < N/8 is bounded by

N/2

the probability that in N/2 Bernoulli trials (where the probability that the outcome is 1 is 1/2),
the number of trials with outcome 1 is less than half the expected value. This probability is at
most exp(—(1/2) - (1/2)% - (N/4)) = exp(—N/32).

If among the d random matchings, at least d/2 have at least N/8 edges going from V¥ to V{ ,

, and the latter is

then the number of violating edges is at least % -d- N. Since the d random matchings are selected
independently, the probability that in more than half of them there are less then N/8 edges that
go from V4 and V{ , is less than

2% . exp(—(N/32) - (d/2)) < exp(—d - (N/64 — 1))

which is less than 272V for d > 128. M

Let A be an algorithm for testing acyclicity using m = m(N) queries (where € is constant).
Namely, A is a (possibly probabilistic) mapping from query-answer histories [(q1,a1), ..., (g, at)]

12

to gi+1, for every t < m, and to {accept, reject}, for t = m. A query ¢ is a triplet (v, ¢, by), where
vy € V, 4y € [d], and by € {in,out}. An answer a; is simply a vertex u; € V, where, in case b = out
this means that there is an edge going from v; to u; labeled by i¢, and in case b = in this means
that there is an edge coming into v; from u; labeled 7;. We assume that the mapping is defined
only on histories that are consistent with some graph. Any query-answer history of length ¢ — 1

' query). The vertex

can be used to define a knowledge graph, G", at time ¢ — 1 (i.e., before the
set of G" contains all vertices that appear in the history (either in queries or as answers), and its
edge set contains the edges between vy and ay for all ¢ < ¢ (with the appropriate labelings and

directions). Thus, G¥" is a labeled subgraph of the labeled graph tested by A.

In what follows we describe two random processes, P; and P,, which interact with an arbitrary
algorithm A, so that for j € {1,2}, P; answers A’s queries while constructing a random graph
from G;. For a fixed A that uses m queries, and for j € {1,2}, let Dj-* denote the distribution on
query-answer histories (of length m) induced by the interaction of A and P;. We shall show that
for any given A that uses m < aN'/? queries, the statistical difference between D2 and D4 is at
most a1 + «). We then combine this with Lemma 5 to obtain the lower bound of Theorem 4.

DEFINITION OF P;. The process has two stages. The first stage proceeds as long as the algorithm
performs queries. In this stage the process answers the algorithm’s queries and updates the knowl-
edge graph. In the second stage the process completes the knowledge graph into a graph in G;. In
the first stage, whenever a new vertex is added to the knowledge graph, the process assigns it to a
particular layer. Note that this information is not included in the knowledge graph, and it is only
implicit in the cases where a vertex is known to be a source or a sink. Starting from ¢ = 1, for each
query q; = (v, it,b) of A, process P; proceeds as follows:

1. If v; does not belong to the knowledge graph GX®, then P, first assigns v; to one of the layers
L; in the following manner. Let n; be the number of vertices in G that are already assigned
to layer L;. Then v, is assigned to L; with probability WL (Recall that M = N 2/3 is the
size of each layer.)

Let L; be the layer that vertex v; is assigned to and assume b; = out (the case b = in is
treated analogously). If j = K then the answer is ‘0’ (as all vertices in the last layer are sinks).
Otherwise, the answer u; is chosen among the vertices in Lj+1 and the vertices not yet in the
knowledge graph (whose set we denote by R) as follows. Let nj ‘1 be the number of vertices in
L;;1 that already have an incoming edge labeled ;. Then with probability M—J— a vertex

Tit1
is chosen uniformly among the vertices assigned to Lj41 that do not have an incoming edge

1t

labeled i¢, and with probability 1 — %L a vertex is chosen uniformly in R (and assigned
it

to layer Lji1).

2. If v; belongs to GK, and the edge queried is in GX" as well, then P; answers consistently with
Gkn,
3. If v; belongs to G but the edge queried does not belong to the knowledge graph then the

13

answer u; is chosen as described in the second part of Item 1 above.

In the second stage of P; the process uniformly selects a graph in G; among all those consistent
with the final knowledge graph G". More precisely, for each j € [K] let n; be the number of
vertices assigned to L;. Then the algorithm first randomly partitions the vertices not in G*" into
K subsets, where the j’s subset has size M — n;, and assigns them to the respective layers. The
process then randomly completes the d matchings from each L; to L.

DEFINITION OF P,. Similarly to P;, process P, consists of two stages. In the first stage, for each
query q; = (v, it,b) of A, process P, proceeds as follows:

1. If v; does not belong to G, then P, first assigns v; either to S; or to Sy in the following
(random) manner. Let n; be the number of vertices in the current knowledge graph that are
already in Si, and let ng be the number of vertices in Sy. Then, for j € {1,2}, v; is assigned to
S; with probability %

Suppose v; is assigned to S; and assume b; = out (the other cases — v; assigned to Sy and/or
by = in — are treated analogously). The answer u; is chosen among the vertices in So and the
vertices not yet in the knowledge graph (whose set we denote by R) as follows. Let néﬁ be the

number of vertices in So that already have an incoming edge labeled ;. Then with probability

Cpit
1::/22 nzit a vertex is chosen uniformly from the other vertices that were already assigned to Se,
—nd
—nlt
and with probability 1 —]:;/22—";17, a vertex in R is chosen uniformly (and added to Ss).
2

2. If v; belongs to GX*, and the edge queried is in GX" as well, then P, answers consistently with
Gkn,

3. If v; belongs to GK™ but the edge queried does not belong to the knowledge graph then the
answer u; is chosen as describe in Item 1 above.

In the second stage of P the process uniformly selects a graph in Go among all those consistent
with the final knowledge graph GX™. More precisely, if n; and ny are the number of vertices assigned
to S and So, respectively, then the algorithm first randomly selects a subset of size N/2—mn; among
the vertices not in G¥® and assigns them to S;. The rest of the vertices not in GX* are assigned to
So. The process then randomly completes the d matchings from S to So and the d matchings from
82 to Sl.

Lemma 6 For every algorithm A, the process Py (P,), when interacting with A, uniformly gen-
erates graphs in G1 (Ga).

The lemma easily follows by induction on the maximum number of queries performed by A,
where one may consider only deterministic algorithms, as every probabilistic algorithm can be
viewed as a distribution over deterministic ones. The base case is clear, since if no query is made
then the distribution on the resulting graph is clearly uniform. The induction step follows directly
from the definition of the processes. In particular, the distribution on answers for any given query

14

is such that the following holds. The distribution on graphs resulting from the process switching to
the second stage after it answers the query is exactly the same as the distribution resulting from
the process performing the second stage without answering the query.

Lemma 7 Let o < 1 and m < aN'/3. Then, for every algorithm A that asks m queries, the
statistical distance between Di* and D5 is at most a(l +).

Recall that D denotes the distribution on query-answer histories (of length m) induced by the
interaction of A and P;.

Proof: We assume without loss of generality that A does not ask queries whose answer can be
derived from its knowledge graph, since those give it no new information. Under this assumption,
we show that both in Df‘ and in D?, the total weight of query-answer histories in which for some

" query (i.e., there exist ¢ < t such

t < m either a vertex in G*" is returned as an answer to the
that a; = vy or a; = ay), or, the answer is ‘0’, is at most a1l + «). Note that by the definition of
P; and P, in both distributions, for every history prefix, conditioned on the event that the new
answer is not ‘0’ and does not equal some previous query or answer, the new answer is uniformly
distributed among all vertices not appearing in the history. Since A’s queries only depend on
the preceding query-answer history, the two distributions differ only in the probability assigned
to sequences either containing the answer ‘0’, or a vertex that already belongs to the induced
knowledge graph. Since we show that the total weight of such sequences is at most a(1 + «), the

bound on the statistical difference between the two distributions follows.

For any t < m, consider first the event that a vertex in GX" is returned as an answer to the
' query. In other words, v; is matched (either via its outgoing edge, 4;, or via its incoming edge,
i¢), to some vertex in G, In the worst case, for both processes, there are at most ¢ — 1 vertices
in the knowledge graph. In the case of P;, when b = in they may all belong to the level following
that of v;, and not have an incoming edge labeled i;, and when b = out they may all belong to the
level preceding v; (and not have an outgoing edge labeled i;). In either case, the probability that

vy is matched to any of them is at most W@%}t)_l), which for t < N'/3 is less than 2](\;;/?. In the
case of P the probability that such an event occurs is only at most + /g:(?—n < 256721), Thus, the

probability that such an event occurs for either process in a sequence of aN/3 queries is at most
i % < o?.

We next bound the probability that when the algorithm interacts with P;, it answers ‘0’ (i.e.,
vy is a sink and by = out or v is a source and b; = in). We bound this probability conditioned
on no answer being selected from the knowledge graph (since we have bounded the probability
that such an event occurs above). We view the algorithm as a strategy that tries to maximize the
probability of reaching either a source or a sink. Each such strategy, together with the answers it
receives (where given our conditioning, each answer is a uniformly distributed vertex), induces a
distribution on a number s of starting vertices and 2s lengths. Each starting vertex corresponds to
a query (v, it, by), where v; is not in the current knowledge graph. For each such starting vertex vy,
there are two lengths — one determining the length of the path, starting from v;, using incoming

15

edges, and one using outgoing edges. (As the algorithm is trying to maximize the probability of
reaching a source or a sink, branching from such paths only wastes queries.) As the algorithm
makes aN'/3 queries, the sum of all lengths is aN'/3. It thus suffices to bound the probability of
reaching either a source or a sink, for any fixed choice of s, and the lengths £},42,...,£L, /2 such

that Z;Zl(ﬁ} + é?) = aN'/3, Let h; be a random variable whose value is the level the j'th starting
vertex belongs to. Then the above probability equals

s s [0t g2
Zpr[hjge; orhsz—eﬂ = <EJ+EJ> (3)
Jj=1 j=1

1 - 1 2

= —-> (+6) (4)
K i J J

= « ()

Proof of Theorem 4: Assume, contrary to the claim that there exists a testing algorithm A
that uses at most iN 1/3 queries. Recall that by Lemma 6, the process Py, when interacting with A,
uniformly generates graphs in G, and the process P», when interacting with A, uniformly generates
graphs in G,. Since all graphs in G; are acyclic, algorithm A, when interacting with P;, should
accept with probability at least 2/3. By Lemma 7, the statistical difference between DiA and D‘QA is
at most +(1+1) = %. It follows that the probability that algorithm A, when interacting with Py,

accepts, is at least % — % = %. On the other hand, by Lemma 5 (and the lower bound on the size

of N), much fewer than % of the graphs in Gy are %-close to acyclic. Since A should accept each
graph that is 11—6-far from acyclic with probability smaller than 1/3, we get that the probability
it accepts when interacting with P» is less than % + % = }l—g, contradicting the lower bound we

obtained above on this probability. H

4.1 Difficulty of This Setting

We close this section by discussing the apparent difficulties that a testing algorithm must overcome,
which leads us to believe that the problem may be harder than the Q(N'/3) bound of Theorem 4.
The point of this section is to present characteristics of two families of graphs that seem difficult
to distinguish using only O(N'/3) queries. It is an open problem how to formalize this intuition
into a formal bound.

Consider a directed graph G that is e-far from acyclic. Let Cq,...,Cy be its strongly connected
components (where some of these components may include only a single vertex). For 1 < i < k, let
e; be the minimum number of edges that need to be removed from C; in order to make it acyclic.
Then, by definition,), e; > edN. In particular, this implies that there is a relatively large fraction
of vertices that belong to strongly connected components for which e; is relatively large. Thus, with
non-negligible probability, a uniformly selected vertex will belong to such a component. However, in
order to detect that the component contains cycles, the algorithm must “stay inside the component”

16

(that is, perform many queries concerning edges between vertices in the component). The difficulty
is how to distinguish between edges inside the components and edges between components (which
“lead the algorithm out of the component”).

In view of the above, we conjecture that some construction along the following lines could bring
about a lower bound that improves on Theorem 4. Similarly to the proof of Theorem 4, we define
two families of (directed) graphs, Gi and Go, each over N vertices, with degree bound d. All graphs
in Gy are acyclic, and almost all graphs in Gs are e-far from acyclic (for some constant €). In both
families, the vertices are partitioned into three subsets: Vg, V,,, and V, (where £ stands for ‘left’,
m stands for ‘middle’ and r stands for ‘right’). The sizes of Vy and V, are twice the size of V,,.
The edges between the sets only go from V, to V,, and from V,, to V,.

In Gi, the edges within the three sets are similar to those in the family of acyclic graphs
constructed in the proof of Theorem 4, except that we allow for some variability in the number of
incoming/outgoing edges each vertex has from/to the previous/next layer. In addition, vertices in
the last layer of V,,, have edges going to the first layer of V,,, and vertices in the last layer of V,,
have edges going to the first layer of V,. Finally, every vertex in V,, has one incoming edge from
some vertex in the last half layers of V; and an edge going to some vertex in the first half layers
of V,. (The reason for variability in degrees is so that vertices in V; will not necessarily have a
higher outdegree than those in V,,, and vertices in V, will not all have higher indegrees, which
might allow an algorithm to “discover” the layer of a vertex.)

In G, the edges within the sets V, and V, are the same as in G;. The edges within V,, are
similar to those defined for the family of graphs that are far from acyclic in the proof of Theorem 4,
where again we allow for variability of degrees. Here too every vertex in V,, has one incoming
edge from some vertex in the last half layers of V, and an edge going to some vertex in the first
half layers of V,.. Finally, there are edges going from the last layer of V, to a subset of vertices of
the same size in V,,, and similarly edges coming from another such subset to the first layer in V,
(the first set may have only outgoing edges to other vertices in V,,, and the second may have only
incoming edges from other vertices in V,;,). In both families the labels of the edges going between
the sets vary (so there is no particular edge label that always “brings” from one set to the other).

The idea is that the only way to distinguish between the two families is to ask a sufficient
number of queries that correspond to edges within V,,. A challenge of the algorithm is how to
determine when it has “exited” V,, via an incoming edge to V; or an outgoing edge to V,, so as to
be able to “stay inside” V,, to detect the cycles. It is an open question how to formalize the above

intuition into a rigorous lower bound.

5 Testing Strong Connectivity
We say that a directed graph is strongly connected if there is a directed path from every vertex in

the graph to every other vertex. As noted in the introduction, the natural model for testing this
property is the incidence-lists model. We first show that if the testing algorithm can query not

17

only on outgoing edges from each vertex, but also on incoming edges, then it is possible to test
strong connectivity in 6(1 /€) time. We next show that if the testing algorithm only has access to
outgoing edges, then the same test requires Q(v/N) queries. These contrasting results demonstrate
how sensitive property testing algorithms can be to the type of queries allowed.

5.1 Testing Using Queries on both Outgoing and Incoming Edges

We first introduce some definitions. The strongly connected components of a graph G = (V,E) are
maximal subsets C C V such that there is a directed path from each vertex in C to every other
vertex in C. In particular, a strongly connected graph has a single strongly connected component,
and for all graphs, the strongly connected components are disjoint. We define an auxiliary directed
graph, H(G), whose vertices correspond to the components of G. There is an edge from the vertex
representing component C, to the vertex representing component C’, if and only if, there is at least
one edge in G from some vertex in C to some vertex in C'. This auxiliary graph is clearly acyclic,
as a cycle in H(G) would imply that all vertices belonging to components on the cycle are actually
connected to each other (contradicting the maximality of the components). We say that a vertex
in H(G) is a source vertex, if it has only outgoing edges, and that it is a sink vertex, if it has
only incoming edges. We refer to the corresponding components as source components and sink
components, respectively.

The following lemma generalizes what is shown in [20] for undirected graphs. The lemma, and
the discussion following refer to the bounded-degree incidence-lists model, but can be generalized
to the case in which there is only a bound on the number of edges in the graph (as done for the
undirected case in [29]). For sake of symmetry, we assume that both the outdegree and the indegree
of the vertices are bounded by d.

Lemma 8 If a directed graph G is e-far from the class of strongly connected graphs on N vertices,
and the mazimum indegree and outdegree is d, then the number of components in G that are either
source components or sink components is greater than 5 - dN.

We note that there was an error in the following proof, which was brought to our attention
(together with a suggestion for fixing it) by Shirley Halevy. We thank her for her help.

Proof: Assume, contrary to what is claimed in the lemma, that there are at most §-d/N components
in G that are either source or sink components. We next show that by adding (and possibly
removing) at most € - dN edges to G we can make it strongly connected. But this contradicts the
premise of the lemma by which G is e-far from being strongly connected, and the lemma follows.
Assume first that in each component of G that is either a source or a sink component, there is
at least one vertex that has indegree at most d —1, and one vertex that has outdegree at most d —1.
Consider any ordering C3°, ..., C}° on the source components, and any ordering S ,Cﬁi on the
sink components. Then we can connect the components in a cycle C5°,...,Cj°, C{, ..., C¥ (so that
there is an edge going from each component to the next and from C% to C5°, where the edges are

18

between the vertices having degree less than d). It is easy to verify that for any two vertices v and
u, there is a directed path from v to u in the modified graph. The number of edges added is equal
to the number of source and sink components, and so is bounded by 5 - dN.

If there exist source or sink components in which there is no vertex with outdegree at most
d — 1 or no vertex with indegree at most d — 1, then we do the following. Assume first that each
such component consists of more than one vertex. Then we remove one edge (v, u) between some
pair of vertices v and u in the component, and then add edges as described above. Specifically, the
new edge going out of the component is incident to v, and the new edge going into the component
is incident to u. If there is an additional path from v to u (going through other vertices in the
component), then we did not affect the connectivity of the component. Otherwise, there is now
a new path from v to u in the modified graph using the added edges. The total number of edge
modification is 2- § - dN.

Finally we need to attend to the case in which there are source components that contain a single
vertex with maximum outdegree or there are sink components that contain a single vertex with
maximum indegree. By adding at most § - dN edges, we shall modify the graph so that after the
modification all these vertices will have non-zero indegree and non-zero outdegree. In other words,
each of them will either belong to a source or sink components with more than one vertex, or it
won’t belong to source or sink components at all. This will reduce the problem to the one above
(at an additional cost of at most § - dN edge modifications).

To this end we first find a maximum matching between the source components that contain a
single vertex (having maximum outdegree) and the sink components that contain a single vertex
(having maximum indegree). We then add an edge from each sink vertex in the pair to the source
vertex in the pair. Assume without loss of generality that we remain with unmatched source vertices
(if there are no unmatched vertices then we are done). Since the total over the indegrees of all
vertices in the graph equals the total over the outdegrees, and all these unmatched vertices have
maximum outdegree, we can find a subset of vertices with less than maximum outdegree, and add
edges from them to the remaining unmatched source vertices.

We thus obtain a strongly connected graph at the cost of at most € - dN edge modifications.

By using a simple counting argument, we obtain the following corollary:

Corollary 9 If a graph G is e-far from the class of N -vertex strongly connected graphs with indegree
and outdegree bounded by d, then G has at least EdTN source and sink components each containing
less than % vertices.

This corollary suggests the following algorithm: Uniformly and independently select m =
©(1/(ed)) vertices in G. From each vertex selected, perform one Breadth First Search (BFS)
using outgoing edges and one using incoming edges (that is, going against the direction of the
edges). Stop each of these searches when % vertices have been reached or when no new vertex can
be reached. (We assume that the total number of vertices in the graph is at least % or else in

19

O(1/e) time it is possible to exactly decide whether the graph is strongly connected by looking at
the whole graph). In the latter case the algorithm has discovered a small source or sink component,
implying that the graph is not strongly connected, and it rejects. If no search causes the algorithm
to reject, it accepts.

Clearly, the algorithm always accepts a strongly connected graph. If the graph is e-far from

strongly connected then by Corollary 9 it has at least fdﬁN source and sink components with less

than 5671 vertices. The probability that none of the uniformly selected vertices belongs to such a

m
component is at most (- %—d) , which is less than 1/3 for the appropriate constant in the ©(:)

notation of m. Given that at least one such vertex is selected, the algorithm rejects the graph as
required. The running time of the above algorithm is O(1/(e?-d)) (as there are O(1/(¢-d)) starting
vertices and from each the algorithm performs two searches each at a cost of at most d- & = O(1/¢)).
Using techniques from [20], it is possible to reduce the complexity of the algorithm by a factor of
Q(log(1/(ed))/(ed)) by slightly modifying the algorithm.

5.2 Testing Using Queries on Outgoing Edges Only

Unfortunately, if the algorithm can only perform queries about outgoing edges (as the basic model
allows), then testing strong connectivity requires £2(v/N) queries for constant d and e. Below we
sketch the details.

Consider the following two families of directed graphs (see Figure 2):

1. The first family, Gy, consists of all graphs whose N vertices lie on one single directed cycle.

2. The second family, G consists of all graphs such that N/2 of the vertices lie on a cycle, and
each of the remaining vertices has a single outgoing edge to a unique vertex on the cycle.

In both families, the outdegree of every vertex is 1, and the indegree is at most 2. All graphs
in the first family are strongly connected, since there is a path along the cycle between every two
vertices. On the other hand all graphs in the second family are at least %—far from the class of
strongly connected graphs with degree bound 1, since each of the N/2 vertices with indegree 0 must
have indegree at least 1 in order for the graph to be strongly connected.

However, we claim that for some constant o < 1, any algorithm that performs less than a - v N
queries, cannot distinguish between a randomly selected graph in G; and a randomly selected graph
in Gy (with sufficient success probability). The structure of the proof is similar to that of Theorem 4
and is hence only sketched briefly.

Here too we define two processes that answer queries of any testing algorithm while constructing
a uniformly chosen graph in one of the two families. The first process (which constructs graphs
in Gy) is very simple. Upon each new query (recall that there is only a single edge going out of
each vertex), it either uniformly selects a new vertex that is not yet in the knowledge graph, or
it selects (uniformly) a vertex that already belongs to the knowledge graph and has no incoming
edge from another vertex in the knowledge graph. The decision between selecting a new vertex or

20

//VN\\ “\ ./L /

J ‘ NS

\ : ol
(a) \\'\-“'/. (b) 3 I R

Figure 2: In (a), the structure of the graphs in G; is shown. In (b), the structure of the graphs in G, is shown.
The graphs in a family differ only in the labels assigned to the vertices.

a known vertex, is done randomly based on the current size of the knowledge graph. When the
testing algorithm terminates, the process uniformly selects a graph in G; that is consistent with the
knowledge graph. The second process is similar, except that whenever a query about a new vertex
is made, the algorithm decides whether the new vertex is a “cycle vertex” or an “outside vertex”
(having indegree 0). This decision again is made according to the proportion of such vertices in
the knowledge graph.

It is easy to verify that the two processes in fact construct uniformly selected graphs in the
respective families of graphs. Furthermore, for both processes we can bound the probability that
the process answers a query with a vertex already in the knowledge graph in any sequence of at
most av/N queries. Given that such an event does not occur, then the answers to the queries
in both cases are uniformly selected vertices, and no algorithm can distinguish between the two
processes.

Acknowledgements

We would like to thank an anonymous ICALP program committee member for helping us simplify
the proof of Theorem 1.

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. In
Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages
656-666, 1999.

[2] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. In Proceedings of the Fortieth Annual Symposium on Foundations

of Computer Science, pages 645-655, 1999.

21

3]

[10]

[11]

[12]

[13]

[14]

[15]

S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem with
applications to dense graph arrangement problems. In 37th Annual Symposium on Foundations
of Computer Science, pages 21-30, 1996.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractability
of approximation problems. Journal of the Association for Computing Machinery, 45(3):501—
555, 1998.

S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. Journal
of the Association for Computing Machinery, 45(1):70-122, 1998.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic
time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,
pages 21-31, 1991.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-
active protocols. Computational Complexity, 1(1):3-40, 1991.

B. Berger and P. W. Shor. Tight bounds for the maximum acyclic subgraph problem. Journal
of Algorithms, 25(1):1-18, Oct. 1997.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of the Association for Computing Machinery, 47:549-595, 1993.

Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-
proved testing algorithms for monotonocity. In Proceedings of RANDOMY99, pages 97-108,
1999.

F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. In
Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing, pages
259-268, 1998.

G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. Journal of the Association for Computing Machinery, 43(2):268-292, 1996.

A. Frieze and R. Kanan. Quick approximation to matrices and applications. Combinatorica,
19(2):175-220, 1999.

P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approxi-
mate query answers. SIGMOD Record: Proc. ACM SIGMOD Int. Conf. Management of Data,
27(2):331-342, 2-4 June 1998.

22

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on External
Memory Algorithms and Visualization, A, 1999.

M. Goemans and D. Williamson. Primal-dual approximation algorithms for feedback problems
in planar graphs. Combinatorica, 18(1):37-59, 1998.

O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity.
Combinatorica, 20(3):301-307, 2000.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the Association for Computing Machinery, 45(4):653-750, 1998.
An extended abstract appeared in FOCS96, pages 339-348.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of the
Thirty-First Annual ACM Symposium on the Theory of Computing, pages 406-415, 1997. To
appear in Algorithmica.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. Combina-
torica, 19(3):335-373, 1999.

R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph problem.
Information Processing Letters, 51(3):133-140, Aug. 1994.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-
lems: Theoretical and practical results. Journal of the Association for Computing Machinery,
34(1):144-162, Jan. 1987.

D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal on Com-
puting, 17(3):539-551, 1988.

V. Kann. On the Approzimability of NP-Complete Optimization Problems. PhD thesis, Depart-
ment of Numberical Analysis and Computer Science, Royal Institute of Technology, Stockholm,
1992.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complezity of Computer Computations, pages 85-103, New York, 1972. Plenum Press.

M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal of
Computer and System Sciences, 61(3):428-456, 2000.

C. Papadimitriou and M. Yannakakis. Optimization, approximization and complexity classes.
Journal of Computer and System Sciences, 43:425-440, 1991.

23

[29] M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of Random99, pages
85-96, 1999. To appear in Random Structures and Algorithms.

[30] R. Rubinfeld. Robust functional equations and their applications to program testing. SIAM
Journal on Computing, 28(6):1972-1997, 1999.

[31] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

[32] P. D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281-288, 1995.

24

