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Abstract

Given two distributions over am element set, we wish to
check whether these distributions are statistically clbge
only sampling. We give a sublinear algorithm which uses
O(n?/3¢*1ogn) independent samples from each distribu-
tion, runs in time linear in the sample size, makes no as-
sumptions about the structure of the distributions, and dis

tinguishes the cases when the distance between the distribu

tions is small (less thamax(%, ﬁ)) or large (more
thane) in L;-distance. We also give &(n?/3¢—2/3) lower
bound.

Our algorithm has applications to the problem of check-
ing whether a given Markov process is rapidly mixing. We
develop sublinear algorithms for this problem as well.

1. Introduction

Suppose we have two distributions over the saired-
ement set, and we want to know whether they are close to
each other inL;-norm. We assume that we know nothing
about the structure of the distributions and that the only al
lowed operation is independent sampling. The naive ap-
proach would, for each distribution, sample enough ele-
ments to approximate the distribution and then compare
these approximations. Theorem 14 in Section 3.3 shows
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that the naive approach requires at least a linear number of
samples.

In this paper, we develop a method of testing that the dis-
tance between two distributions is at mesising consider-
ably fewer samples. If the distributions hale-distance
at mostmax(g;—%, 177=) then the algorithm will accept
with probability at least — 4. If the distributions havd.;-
distance more than then the algorithm will accept with
probability at most§. The number of samples used is
O(n?3¢ *lognlog +). We give anQ(n?3e~%/3) lower
bound for testing’; -distance.

Our test relies on a test for tHe -distance, which is con-
siderably easier to test; we give an algorithm that uses a
number of samples which is independentof However,
the L,-distance does not in general give a good measure of
the closeness of two distributions. For example, two distri
butions can have disjoint support and still have snigH
distance. Still, we can get a very good estimate ofithe
distance and then we use the fact that fhedistance is at
most+/n times theL,-distance. Unfortunately, the num-
ber of queries required by this approach is too large in gen-
eral. Because of this, out;-test is forced to distinguish
two cases.

For distributions with smalL,-norm, we show how to
use thelLs-distance to get a good approximation of the
distance. For distributions with largér-norm, we use the
fact that such distributions must have elements which oc-
cur with relatively high probability. We create a filtering
test that estimates thig, -distance due to these high prob-
ability elements, and then approximates the-distance
due to the low probability elements using the test for



distance. Optimizing the notion of “high probability” yasd for various distance measures are given in [4, 19, 5, 6, 18].
ourO(n?3e *lognlog %) algorithm. ThelL,-distance test  None of these give sublinear bounds in the domain size for
usesO(e~*1log(1/5)) samples. our problem. The specific model of singleton hypothesis
Applying our techniques to Markov chains, we use the classes is studied by Yamanishi [27].
above algorithm as a basis for constructing tests for deter-  Goldreich and Ron [12] give methods allowing testing
mining whether a Markov chain is rapidly mixing. We show  that the L,-distance between a given distribution and the
how to test whether iterating a Markov chain fosteps  uniform distribution is small in time(/n). Their “colli-
causes it to reach a distribution close to the stationatyidis  sion” idea underlies the present paper. Based on this, they
bution. Our testing algorithm works by followir@(tn°/?) give a test which they conjecture can be used for testing
edges in the chain. When the Markov chain is represented inwhether a regular graph is close to being an expander, where
a convenientway (such a representation can be computed imyy close they mean that by changing a small fraction of
linear time and we give an example representation in Sec-the edges they can turn it into an expander. Their test is
tion 4), this test remains sublinear in the size of a densebased on picking a random node and testing that random
enough Markov chain for small We then investigate two  walks from this node reach a distribution that is close to
notions of beingloseto a rapidly mixing Markov chainthat  uniform. Our tests are based on similar principles, but we
fall within the framework of property testing, and show how do not prove their conjecture. Mixing and expansion are
to test that a Markov chain is close to a Markov chain that known to be related [24], but our techniques only apply to
mixes int steps by following onhyO(¢n*?) edges. Inthe  the mixing properties of random walks on directed graphs,
case of Markov chains that come from directed graphs andsince the notion of closeness we use does not preserve the
pass our test, our theorems show the existence of a directedymmetry of the adjacency matrix. In another work, Gol-
graph that is close to the original one and rapidly mixing.  dreich and Ron [14] show that testing that a graph is close

Related Work Our results fall within the various frame- {0 @n expander requiréx(n'/?) queries.
works of property testing [22, 13, 14, 7, 21]. Arelated work ~ The conductance [24] of a graph is known to be closely
of Kannan and Yao [17] outlines a program checking frame- related to expansion and rapid-mixing properties of the
work for certifying the randomness of a program’s output. graph[16][24]. Frieze and Kannan [10] show, given a graph
In their model, one does not assume that samples from the with n vertices andy, one can approximate the conduc-
input distribution are independent. tance ofG to within additive error in time O(n20(1/“2)).
There is much work on the problem estimating the dis- Their techniques also yield an(2r°(1/)) time test which
tance between distributions in data streaming models wheredetermines whether an adjacency matrix of a graph can be
space is limited rather than time (cf. [11, 2, 8, 9]). Another changed in at mostfraction of the locations to get a graph
line of work [3] estimates the distance in frequency count with high conductance. However, for the purpose of test-
distributions on words between various documents, whereing whether am-vertex, m-edge graph is rapid mixing,
again space is limited. we would need to approximate its conductance to within
In an interactive setting, Sahai and Vadhan [23] show « = O(m/n?); thus only whenn = ©(n?) would it runiin
that given distributiong andgq, generated by polynomial-  O(n) time.

size circuits, the problem of distinguishing whetpeandg It is known that mixing [24, 16] is related to the separa-
are close or far ir.1-norm, is complete for statistical zero- tion between the two largest eigenvalues [1]. Standard tech
knowledge. niques for approximating the eigenvalues of a densen

There is a vast literature on testing statistical hypotiese matrix run in ©(n?) flops and consumé(n?) words of
In these works, one is given examples chosen from the samenemory [15]. However, for a sparae< n symmetrianatrix
distribution out of two possible choices, spyandg. The with m nonzero entries; < m, “Lanczos algorithms” [20]
goal is to decide which of two distributions the examples accomplish the same task@(n[m+logn]) flops, consum-
are coming from. More generally, the goal can be stated asing ©(n + m) storage. Furthermore, it is found in practice
deciding which of two known classes of distributions con- that these algorithms can be run for far fewer, even a con-
tains the distribution generating the examples. This can bestant number, of iterations while still obtaining highly-ac
seen to be a generalization of our model as follows: Let the curate values for the outer and inner few eigenvalues. Our
first class of distributions be the set of distributions af th test for rapid mixing of a Markov chain runs more slowly
form ¢ x ¢. Let the second class of distributions be the set than the algorithms that are used in practice except oryfairl

of distributions of the formy; x ¢o where thel, differ- dense graphsi{ > tn°/3logn). However, our test is more
ence ofg; andq, is at least. Then, given examples from  efficient than algorithms whose behavior is mathematically
two distributionsp,, p2, create a set of example paits y) justified at every sparsity level. Our faster, but weakestste
wherex is chosen according tp; andy according tops. of various altered definitions of “rapid mixing,” are more

Bounds and an optimal algorithm for the general problem efficient than the current algorithms used in practice.



2. Preliminaries

We use the following notation. We denote the set
{1,...,n} as[n]. The notationr €r [n] denotes that is
chosen uniformly at random from the gef. The L;-norm
of a vectord is denoted byv| and is equal toy .-, |v;].
Similarly the Ly-norm is denoted byj#|| and is equal to
Vi, vZ, and||v]| o = max; |v;|. We assume our distri-
butions are discrete distributions oweelements, and will
represent a distribution as a vecfoe= (p1, ..., p,) where
p; is the probability of outputting elemeit

The collision probabilityof two distributionsp’andq’is
the probability that a sample from each @find ¢ yields
the same element. Note that, for two distributigihg, the
collision probability isp ¢ = 3, pi¢;. To avoid ambiguity,
we refer to the collision probability gf andp as theself-
collision probabilityof 7, note that the self-collision proba-
bility of 7'is ||p]|2.

3. Testing closeness of distributions

The main goal of this section is to show how to test that
two distributionsp’andq are close inL.;-norm in sublinear
time in the size of the domain of the distributions. We are
given access to these distributions via black boxes which
upon a query respond with an elemen{of generated ac-
cording to the respective distribution. Our main theorem is

Theorem 1 Given parameterd, and distributions p, ¢
over a set ofn elements, there is a test which runs
in time O(e *n**lognlog %) such that if 5 — ¢ <
(%, ﬁ), then the test outpufgass with prob-
ability at leastl — § and and if[7 — q] > ¢, then the test
outputsf ai | with probability at leastl — 4.

max

In order to prove this theorem, we give a test which de-
termines whethep andq are close inL.o-norm. The test is
based on estimating the self-collision and collision proba
bilities of p’and . In particular, ifp’andg are close, one
would expect that the self-collision probabilities of each
close to the collision probability of the pair. Formalizing
this intuition, in Section 3.1, we prove:

Theorem 2 Given parameteb, and distributionsy’ and ¢
over a set of elements, there exists a test such thdpit-

7]l < /2 then the test passes with probability at least d.

If ||[7— ]| > e then the test passes with probability less than
6. The running time of the test{3(e¢~*log $).

The test used to prove Theorem 2 is given in Figure 1. The
number of pairwise self-collisions in sét is the count of

i < j such that theé'® sample inF" is same as thg'® sam-

ple in F. Similarly, the number of collisions betwe&p,
and@, is the count of(4, j) such that the*® sample inQ,

Lo- Di st ance- Test (p,q, m,¢,0)
Repeat O(log(3)) tinmes
Let F, = a set of m sanples fromyp
Let F,= a set of m sanples from¢
Let r, be the nunmber of pairw se
self-collisions in F,.
Let r, be the nunber of pairw se
self-collisions in Fj.
Let @, = a set of m sanples fromyp
Let Q,= a set of m sanples fromgq
Let spq be the nunmber of collisions
between @, and Q.
Let 7= 22 (r, +7,)
Let s=2sp4
If r—s>m??/2 then reject
Reject if the magjority of iterations reject,
accept ot herwi se

Figure 1. Algorithm  L,-Distance-Test

is same as thg'" sample inQ,. We use the parametes
to indicate the number of samples needed by the test to get
constant confidence. In order to bound fhedistance be-
tweenp andq by e, settingm = O(%) suffices. By main-
taining arrays which count the number of times that each
element is sampled if,, £, one can achieve the claimed
running time bounds. Thus essentiathy? estimations of
the collision probability can be performed (m) time.
Using hashing techniques, one can achiéye:) with an
expected running time bound matching Theorem 2.
Sincelv| < /nljv||, a simple way to extend the above
test to anL,-distance test is by setting = ¢/\/n. Un-
fortunately, due to the order of the dependence omthe
Lo-distance test, the resulting running time is prohibitive.
It is possible, though, to achieve sublinear running times
if the input vectors are known to be reasonably evenly dis-
tributed. We make this precise by a closer analysis of the
variance of the test in Lemma 5. In particular, we ana-
lyze the dependence of the variancesadn the parameter
b = max(||p]|cc, ||4]leo)- There we show that givepi and
¢ such thath = O(n~“), one can callL,-Distance-Test
with an error parameter oj—ﬁ and achieve running time of

0(6—4(,”1—(1/2 +n2—2a)).
We use the following definition to identify the elements
with large weights.

Definition 3 An element is called big with respect to a
distribution'if p; > —.

Our L;-distance tester calls the,-distance testing al-
gorithm as a subroutine. When both input distributions
have no big elements, the input is passed td/thelistance
test unchanged. If the input distributions have a large self
collision probability, the distances induced respectivg}



the big and non-big elements are measured in two stepsin our algorithm by scaling, andr, appropriately. By this
The first step measures the distance corresponding to the bigcaling and from the above discussion we seelhal =
elements via straightforward sampling, and the second ste@m?(p-¢) and that [r — s] = m2(||p]|*+|ql|*—2(7- ) =

modifies the distributions so that the distance attributed t
the non-big elements can be measured usind theistance
test. The complete test is given in Figure 2. The proof of
Theorem 1 is described in Section 3.2.

L:- Di stance-Test (p,q,¢,0)
Sanple p and ¢ for
M = O(max(e~2,4)n*?logn) tines
Let S, and S; be the sanple sets obtained
by di scarding el enents that occur |ess
than (1 —¢/63)Mn=2/3 times
If S, and S, are enpty
Lo- Di stance- Test (p,q,0(n*? /"), 35=,6/2)
el se
=4 tinmes element ¢ appears in S,
¢l =4 tinmes element ; appears in S,
Fail if > [¢7 -] >eM/s.
Define p' as follows:
sanple an elenent fromy
if this sanple is not in S, output it,
otherw se output an z €r [n].
Define ¢ similarly.
L-Di stance-Test (p', ¢, 0(n?/3/e%),

=, 5/2)

Figure 2. Algorithm L;-Distance-Test

In Section 3.3 we prove thak(n?/3) samples are for
distinguishing distributions that are far in -distance.

3.1. Closeness iy-norm

In this section we analyze the test in Figure 1 and prove
Theorem 2. The statistics,, r, ands in Algorithm Lo-
Distance-Testare estimators for the self-collision proba-
bility of p, of ¢, and of the collision probability between
P and g, respectively. Ifp’ and ¢ are statistically close,
we expect that the self-collision probabilities of each are
close to the collision probability of the pair. These prob-
abilities are exactly the inner products of these vectors.
In particular if the setF}, of samples fronmyp'is given by
{F,,...,F;"} then for any pait, j € [m],i # j we have
thatPr [Fi = FJ] = - p = ||p]|*>. By combining these
statistics, we show that— s is an estimator for the desired
value||7 — ql|*.

Since our algorithm samples from not one but two dis-
tinct distributions, we must also bound the variance of the
variable s used in the test. One distinction to make be-
tween self-collisions and, ¢ collisions is that for the self-
collision we only consider samples for whi¢k j, but this
is not necessary fgp, ¢ collisions. We accommodate this

m? (|7~ ).

A complication which arises from this scheme, though,
is that the pairwise samples are not independent. Thus we
use Chebyshev’s inequality. That is, for any random vari-
able 4, andp > 0, the probabilityPr [|[A — E[A]| > p] is
bounded above bw. To use this theorem, we require
a bound on the variance, which we give in this section.

Our techniques extend the work of Goldreich and Ron
[12], where self-collision probabilities are used to estien
norm of a vector, and the deviation of a distribution from
uniform. In particular, their work provides an analysis of
the statistics-, andr, above through the following lemma.

Lemma 4 (Goldreich Ron) Let A be one of-, or r, in al-
gorithm L,-Distance-Test ThenE [4] = (%) - ||p]|* and
Var [A] < 2(E [A])?/?

The variance bound is more complicated, and is given in
terms of the largest weight ifiandg.

Lemma 5 There is a constant such thatVar [r — s] <
c(m3b? + m?2b), whereb = max(||pl| oo, /¢l o0 )-

PROOF. Let F be the se{1,...,m}. For(i,j) € F x F,
define the indicator variable; ; = 1 if the i*" element
of @, and the;j!" element ofQ, are the same. Then the
variable from the algorithna,,, = 3, , C; ;. Also define
the notatiorCi,j = Ci,j —E [CLJ]

Now Var [32p, pCij] = E[(ZpxrCis)’]
E {Zi,j(c_vi;j)Q + 2Z(i,j);e(k,l) éi,jék,l] < mg(ﬁ' q) +

2B {Zu,j#(w) Cij C’w} :

To analyze the last expectation, we use two facts. First,
it is easy to see, by the definition of covariance, that
E [C;,;jCri] < E[C;;Ck,). Secondly, we note that; ;
andCy; are not independent only wheén= k or j = [.
Expanding the sum we get

E Z Ci,jCry
(4,5),(k,1)EF X F
(4,5)# (k1)
= E Z Ci,jci,l + E CM-C’;W-
(4,5), (1, )EF X F (i,3), (ki) EF X F
J#l i#k
— E Z Ci,jci,l+ E C’iijk_’j
(4,5), (1, ) EF X F (i,3), (ki) EF X F
J#l i#k




< om® Y peg; +pige < em® > qr < em®?
L€[n] £€(n]

for some constant. In order to boundVar [r — s] we
use Lemma 4. Sinc®ar [r] < em?b and the variance is
additive for independent random variables, we can write
Var [r — 5] < ¢(m3b? + m?2b). O

Now using Chebyshev’s inequality, it follows that if we
choosem = O(e~*), we can achieve an error probability
less tharl /3. It follows from standard techniques that with
O(log %) iterations we can achieve an error probability at
mostJ.

Lemma 6 For two distributionsp and ¢ such thatb
max (|| oo, [1lloc) andm = O((b* + V) /e*), if || —
gl < €/2, thenL»-Distance-Test(p, ¢, m, €, §) passes with
probability at leastl — o. If ||p’— ¢]| > e thenL»-Distance-
Test(p, ¢, m, €, §) passes with probability less than The
running time isO(m log($)).

PROOFE For our statisticA = (r — s) we can say, using
Chebyshev’s inequality, that for some constiant

k(m3b2 + m2b)

PriA-B4] > g < 27

Then when|p' — ¢|| < ¢/2, for one iteration,

Prjpas$ = Pr[(r—s)<m??/2]
> Pr[|(r—s)—E[r—s]| <m??/4]
> - 4k(m3b2+m?b)

miet

It can be shown that this probability will be at lea@s3
whenevern > c(b? + €2v/b)/e* for some constant. A
similar analysis can be used to show the other direction.

3.2. Closeness iL;-norm

p, we definep; = ¢¥/M. Then, with probability at least
1 — 1, the following hold for alli: (1) if p; > €*n=%/3
then|p; — pi| < &5 max(p;,n~2/3), (2) if p; < n~2/3,
pi < (1 —¢€/63)n=2/3.

PROOF We analyze three cases; we use Chernoff
bounds to show that for each with probability at least
1 — 2, the following holds: (1a) Ifp; > n=2/3 then
i — pil < epi/63. (1b) If n=2/3 < p; < n72/3
then|p; — pi| < en=2/3/63. (2) If p; < €2n~2/3 then
pi < 3¢2n~2/3. Since, fore < 1/2, 3¢2 < (1 — ¢/63), the
lemma follows. m|
Once the big elements are identified, we use the follow-
ing fact to prove the gap in the distances of accepted and
rejected pairs of distributions.

Fact 8 For any vectow, ||v||? < |v] - ||v]|oo-

Theorem 9 L;-Distance-Test passes distributionsp’ ¢

such that|p’ — ¢] < max(%, ﬁ), and fails when
|p"— ¢] > €. The error probability is5. The running time of
the whole test i€) (e ~*n?/3log nlog(1)).

PROOF. Suppose items (1) and (2) from Lemma 7 hold for
all 7, and for bothy’andg. By Lemma 7, this event happens
with probability at least — 2.

LetS = S,US,. By our assumption, all the big elements
of bothp’andq are inS, and no element with weight less
thane2n—2/2 (in either distribution) is inS.

Let A, be theL-distance attributed to the elements in
S. LetAy = |p’ — ¢'| (in the case that is empty,A; = 0,
p'=7p andq = q).

Notice thatA; < |p'—4q]. We can show thah, < |7—4],
and|ﬁ— q_1 < 2A71 + Ao

The algorithm estimateg\; in a brute-force manner
to within an additive error ofe/9. The error on the
i*" term of the sum is bounded b (max(p;,n=%/?) +

The L,-closeness test proceeds in two stages. The firstmax(g;,n=%/3)) < &(p; + ¢; + 2n~%/3). Consider the

phase of the algorithm filters out big elements (as defined
in Definition 3) while estimating their contribution to the
distancelp’ — ¢]. The second phase invokes the-test on
the filtered distribution, with closeness paramgt%. The
correctness of this subroutine call is given by Lemma 6 with
b = n~2/3, With these substitutions, the number of sam-
plesm is O(e~*n?/3). The choice of threshold —2/* for
the weight of the big elements arises from optimizing the
running-time trade-off between the two phases of the algo-
rithm.

We need to show that by using a sample of size
O(e~2n?/3logn), we can estimate the weights of the big
elements to within a multiplicative factor 6¥(e).

Lemma?7 Lete < 1/2. In L;-Distance-Test, after per-
forming M = O("Z/i#) samples from a distribution

sum over; of these error terms. Notice that this sum is over
at most2n?/3 /(1 — ¢/63) elements inS. Hence, the total
additive error is bounded by

Z 66—3(1% +q; + 271_2/3) <
€S

€

o5 (2+4/(1—-¢/63)) < /9.
Note thatmax(||F'||se, |7 ]lc) < 7723 + n~1. So,
we can use thd.,-Distance-Teston p’ andq’ with m =
O(e~*n?/3) as shown by Lemma 6.
If |p—q] < % then so aré\; andA,. The first phase

of the algorithm clearly passes. By Fact|@ — ¢'|| <
ﬁ. Therefore, the.,-Distance-Testpasses. Similarly,
if |p'— q] > e then eitherA; > ¢/4 or Ay > €/2. Either
the first phase of the algorithm or tlig-Distance-Teswill

fail.



To get the running time, note that the time for the
first phase isO(¢~2n?/3logn) and that the time foi,-
Distance-Testis O(n?/3¢~*log 1). It is easy to see that

elements the same argument givék) low probability ele-
ments occurring three times. m|
The elements which occur three or more times occur

our algorithm makes an error either when it makes a bad es-only on the heavy elements which have the same probability

timation of A; or whenLsy-Distance-Testmakes an error.
So, the probability of error is bounded by m|
We believe we can eliminate thez n termin Theorem 1

in each distribution. So these cannot help the algorithm dis
tinguish the distributions. Letf be the random variable de-
noting the number of collisions among the heavy elements.

(and Theorem 9). Instead of requiring that we correctly Let L be the random variable denoting the number of colli-

identify the big and small elements, we allow some mis-

classifications. The filtering test should not misclasséyv

sions among the light elements. If the algorithm was given
distributions@ andb the number of collisions it would see

many very big and very small elements and a good analysisbetween them would b& . If the algorithm was given the

should show that our remaining tests will not have signifi-
cantly different behavior.

3.3. Lower Bounds

Theorem 10 Given any test using only(n?/3) samples,
there exist distributiong andb of L;-distance 1 such that

the test will be unable to distinguish the case where one

distribution is@ and the other i$ from the case where both
distributions areqd.

PROOF. Fix a testing algorithm that uses= o(n?/?) sam-

same distributiorii twice the number of collisions would
be the random variablél + L. The only relevant test a
symmetric algorithm can make is to determine whether the
number of collisions between the distributions comes from
HorH—+ L.

The expected value dff is s?/2n?/3. The variance is
0(s%/n?/3 + s3/n?/3) = 0(s?/n?/3) sinces = o(n?/?).
The standard deviation df is \/0(s2/n2/3) = 0(s/n'/3).
The expected value and variance bfis 6(s?/n) =
o(s/n'/3).

Since the expected value and variancé @fre swamped
by the standard deviation df and one would expect it is

ples. Without loss of generality we assume that algorithm is impossible to distinguish between samples drawn figm

symmetric, i.e., given two distributions the algorithm lwil

give the same result for any permutation of the underly-

versusH + L. To see this we need to show thdthas rea-
sonable properties, basically thidtis approximately Gaus-

ing space. Otherwise we could permute the sample spacéian. Letf(h) be the probability that? = h. We will

to maximize the error of the testing algorithm; the result
(including this pre-permutationyould be a symmetric al-

gorithm, and it would have the same failure probability on '

worst-case input.

Let us assume that is a multiple of four. We define
two distributionsz andb as follows: (1) Forl < i < n?/3,
a; = b = 575. We call these the heavy elements. (2) For
n/2 < i < 3n/4,a; = 2 andb; = 0. We call these the
light elements ofi. (3) For3n/4 < i < n, b, = % and
a; = 0. We call these the light elements of (4) For the
remainingi, a; = b; = 0.

The L-distance ofi andb is one. We will show that no
symmetric algorithm can distinguish the two.

Lemma 11 (1) With high probability, at mosb(n?/3) of

the heavy elements occur more than twice in the sample
space of both distributions combined. (2) With high proba-

bility, none of the light elements occur more than twice in
the same space of both distributions.

PROOF. For a fixed heavy element of probability=

2n+/3 the probability that it appears at least three times is

bounded bys3p? = o(1), i.e., that is roughly?® possible

triples each of which are all equal to our element with prob-

ability p®. By linearity of expectation we havgn?/?) high
probability elements occurring three times. For the light

derive an exact formula fof (k).

Consider the experiment of putting indistinguished
balls inb = n?/3 distinguished bags without putting three
in any bag. If we havé collisions thenh bags get 2 balls,
s — 2h bags get 1 ball andl— s + h bags get no balls. The
number of ways to do this is

b!
(s — 2h)1RI(b — s + h)!

1)

Since the balls are distinguished we need to multiply Equa-
tion 1 by s!/2" which is the number of ways to put the
balls intoh bags with 2 balls and — 2h bags of 1 ball.

We then divide by thé* ways of placings distinguish-
able balls intc bags to get

bls!
2h(s — 2h)1(b — s + h)\h!bs

f(h) =
It is useful to consider the ratio gf(h) and f(h — 1).

f(h)

(s=2h+1)(s—2h+2)

9(h) = 2h(h+b—s)

f(h—=1)

By Chebyshev’s inequality, we only need to consider the
case that is within a constant number of standard devia-
tions around the expected value®f In this case we have

s = o(n?/3) = o(b) andh = O(s%/b) = O(s(s/b)) =



o(s). We then havey(h) approximatelys?/2bh. Note
that f achieves its maximum about whegéh) = 1, i.e.,
h = s2/2b which is the expected value &f.

There is a constant such that if for some:, s%/2b —
ks/vVb < hy < ho < s2/2b+ks/vbthenf(hy) andf (hs)
are within a factor of +rk. This follows by approximating
the product of thg/(h)’s in this range.

Now we want to show that/ and H + L do not differ
much as distributions. Let(¢) be the probability that = ¢
andv(z) be the probability that? + L = z. We have
(@) = X, fla — Ou(l).

Since the expected value éfis O(s?/n), by Markov’s
inequality we can get a good approximationta) by only
considering with |¢/| = O(s?/n). In this rangef(x) and
f(z— ¢) differ by at most a factor of + O(s? /n)n'/3 /s =
1+ O(s/n?3) = 1+ o(1). We havev(z) = >,(1 +
o) f(x)u(t) = (1 + o(L)f(x)Xult) = f(z) +
o(f(x)) sinced_, u(f) = 1.

The Li-norm of the distance off and H + L is
> .o(f(xz)) = o(1) since f is a probability distribution.
Thus no statistical test can distinguishand H + L with
nontrivial probability. m|

By appropriately modifying the distributiorisandb we

PROOF. (Sketch) LetAg be the distribution that is uni-
formoverS C {1,...,n}. PickS at random among sets of
sizen/2 and run the algorithm ords. The algorithm only
learnso(n) elements fromS. So with high probability the
L, -distance of whatever distribution the algorithm output
will have L, -distance fromA g of nearly one. O

4. Application to Markov Chains

Random walks on Markov chains generate probability
distributions over the states of the chain which are endpoin
of arandom walk. We emplaf; -Distance-Test , described
in Section 3, to test mixing properties of Markov Chains.

Preliminaries/Notation Let M be a Markov chain repre-
sented by the transition probability matfif. Thewuth state
of M corresponds to an-vectore, = (0,...,1,...,0),
with a one in only theuth location and zeroes elsewhere.
The distribution generated bystep random walks starting
at stateu is denoted as a vector-matrix prodagivi®.

Instead of computing such products in our algorithms,
we assume that ouk;-Distance-Test has access to an or-

can give a stronger version of Theorem 10 with a depen-2clé,néxt .node which on input of the state responds

dence orz.

Corollary 12 Given any test using onby(n?/3/e?/3) sam-
ples, there exist distributiongandb of L, -distances such

that the test will be unable to distinguish the case where onethe cumulative sumb/L(j, k) =
distribution isa@ and the other i$ from the case where both

distributions ared.

We can get a lower bound 6f(¢~2) for testing theL,-
Distance with a rather simple proof.

Theorem 13 Given any test using only(e~2) samples,
there exist distributiong andb of L2 -distancee such that

with the state) with probabilityM (u, v). Given such an or-
acle, the distributio@? M* can be generated if(t) steps.
Furthermore, the oracle itself can be realizedfiogn)
time per query, given linear preprocessing time to compute
Sk M(j,4). The oracle
can be simulated on inputby producing a random number
a in [0, 1] and performing binary search over thi row of
M. to find v such thatM (u,v) < a < M.(u,v + 1).

It then outputs state. Note that whenM is such that
every row has at mosf nonzero terms, slight modifica-
tions of this yield anO(log d) implementation consuming
O(n + m) words of memory ifM is n x n and hasm
nonzero entries. Improvements of the work given |n [26]

distribution is@ and the other i from the case where both achievable with space consumptiofn + m) for imple-

distributions areq.

PROOF Letn = 2, a1 = ay = 1/2 andb; =

1/2 — ¢/v/2 andby = 1/2 + ¢/+/2. Distinguishing these

distributions is exactly the question of distinguishingpa f

coin from a coin of bia#(e) which is well known to require

6(e?) coin flips.

The next theorem shows that learning a distribution us-

ing sublinear number of samples is not possible.

Theorem 14 Suppose we have an algorithm that draws

o(n) samples from some unknown distributibmnd out-
puts a distributior. There is some distributiolfor which

the outpufZis such thaty and ¢ havelL-distance close to

one.

mentingnext _node given linear preprocessing time.

We say that two statesandv are(e, t)-closeif the dis-
tribution generated b#+step random walks startinga&and
v are withine in the L; norm,i.e. |&,M! — &,M!| < e.
Similarly we say that a stateand a distributior¥ are(e, t)-
close if|e,M! — 5] < e. We sayM is (¢, t)-mixingif all
states arée, ¢)-close to the same distribution:

Definition 15 A Markov chainM is (e, t)-mixing if a dis-
tribution 5 exists such that for all states |, M* — 5] < e.

For example, ifM is (e, O(log n log 1/¢))-mixing, thenM
is rapidly-mixing[24]. It can be easily seen that M1 is
(e, to)-mixing then it is(e, t) mixing for all t > .

We now make the following definition:



Definition 16 The averaget-step distribution s\ ; of a
Markov chainM with n states is the distribution

! Zgqu.

Sme = —
n
u
This distribution can be easily generated by pickingni-
formly from [n] and walkingt steps from state.. In an
(e,t)-mixing Markov chain, the averagestep distribution
is e-close to the stationary distribution. In a Markov chain
that is not(e, t)-mixing, this is not necessarily the case.
Each test given below assumes access thadistance
tester L;-Distance-Tegu, v, ¢,4) which given oracle ac-
cess to distributions,,, €, over the same element set de-
cides whethefe, — é,| < f(¢) orif |&, —&,| > e with con-
fidencel —¢. The time complexity of; testisT(n,¢,?),
and f is thegap of the tester. The implementation &f -
Distance-Test given earlier in Section 3 has gd4p) =
¢/(4y/n), and time complexity” = O(%n??log 1).

4.1. Atest for mixing and a test for almost-mixing

We show how to decide if a Markov chain (g, ¢)-
mixing; then we define and solve a natural relaxation of that
problem.

In order to test thaiM is (¢,t)-mixing, one can use
L;-Distance-Test to compare each distributiyM?® with
Sm,t, With error parametee and confidencei/n. The
running time isO(nt - T(n,e,6/n)). If every state
is (f(e)/2,t)-close to some distributios, then sy is
f(e)/2-close tos. Therefore every state ig, t)-close to
Sme- On the other hand, if there is no distribution that
is (e, t)-close to all states, then, in particul&k ; is not
(¢, t)-close to at least one state. We have shown

Theorem 17 Let M be a Markov chain. Givenl-
Distance-Test with time complexi®(n,¢,d) and gap f
and an oracle fomext _node, there exists a test with time
complexityO(nt - T'(n,€,d/n)) with the following behav-
ior: If Mis (f(e)/2,t)-mixing therPr [M passeps> 1—4;

if M is not(e, t)-mixing thenPr [M passep< ¢.

For the implementation of.;-Distance-Test given in Sec-
tion 3 the running time i€ (4n/3tlognlog 1). It dis-
tinguishes between chains which arg4,/n) mixing and
those which are natmixing. The running time is sublinear
in the size ofML if ¢ € o(n'/3/log(n)).

A relaxation of this procedure is testing tmadststarting
states reach the same distribution aftesteps. If(1 — p)
fraction of the states of a givenM satisfy|5— &, M?| < ¢,
then we say thaM is (p, ¢, t)-almost mixing By picking
O(1/p - In(/0)) starting states uniformly at random, and
testing their closeness g ; we have:

Theorem 18 Let M be a Markov chain. Givenl;-
Distance-Test with time complexi®j(n, e, §) and gap f

and an oracle fornext _node, there exists a test with
time complexityO(:T'(n, e, dp) log3) with the follow-

ing behavior: If M is (p, f(€)/2,t)-almost mixing then
Pr[M passes > 1 — ¢; If M is not (p, ¢, t)-almost mix-

ing thenPr [M passep< 4.

4.2. A Property Tester for Mixing

The main result of this section is a test that determines if
a Markov chain’s matrix representation can be changed in
ane fraction of the non-zero entries to turn it intd4x, 2t)-
mixing Markov chain. This notion falls within the scope of
property testing [22, 13, 14, 7, 21], which in general takes
a setS with distance functiom\ and a subseP C S and
decides if an elements € S is in P or if it is far from
every element inP, according toA. For the Markov chain
problem, we take as our s8tall matricesM of sizen x n
with at mostd non-zero entries in each row. The distance
functionis given by the fraction of non-zero entries in whic
two matrices differ, and the difference in their averagtep
distributions.

Definition 19 Let M; and M, be n-state Markov chains
with at most/ non-zero entries in each row. Define distance
function A(M;, Ms) = (e, €e2) iff M; and M, differ on
e1dn entries and s, ;. — Sm,,i| = €2. We say thaM; and
M, are (61, EQ)'C'OSG |'|:A(1\/[17 MQ) < (61, 62).1

A natural question is whether all Markov chains are
close to an(e, t)-mixing Markov chain, for certain param-
eters ofe. For constant andt = O(logn), one can show
that every strongly-connected Markov chain(ésl)-close
to another Markov chain whicfe, ¢t)-mixes. However, the
situation changes when asking whether there igeat)-
mixing Markov chain that is close both in the matrix rep-
resentation and in the averagstep distribution: specifi-
cally, it can be shown that there exist constants, e; < 1
and Markov chainM for which no Markov chain is both
(e1, €2)-close toM and (¢, log n)-mixing. In fact, where;
is small enough, the problem becomes nontrivial even for
€2 = 1. The Markov chain corresponding to random walks
on then-cycle provides an example which is r{ot /2, 1)-
close to any(e, t)-mixing Markov chain.

Motivation As before, our algorithm proceeds by taking
random walks on the Markov chain and comparing final dis-
tributions by using thd.; distance tester. We define three
types of states. Firstmormalstate is one from which a ran-
dom walk arrives at nearly the averagstep distribution.

In the discussion which follows,ande denote constant pa-
rameters fixed as input to the algoritirast M xi ng.

Iwe say(z,y) < (a, b) iff z < aandy <b



Definition 20 Given a Markov ChaiM, a stateu of the
chain is normalif it is (e, t)-close to 3w, That is if
le M — 54| < e. A state ishadif it is not normal.

Testing normality requires tim@(t - T'(n, ¢, §)). Using this
definition the first two algorithms given in this section can
be described as testing whether aligp most) states in
M arenormal Additionally, we need to distinguish states
which not only produce random walks which arrive near
5w+ but which have low probability of visiting a bad state.
We call such statesmoottstates:

Definition 21 A state¢,, in a Markov chainM is smooth
if (@) w is (e, 7)-close tosyr, for 7 = ¢, ..., 2t and(b) the
probability that a2¢-step random walk starting &, visits
a bad state is at most

Testing smoothness of a state requi@g? - T'(n,¢,d))
time. Our property test merely verifies by random sampling
that most states are smooth.

The test Figure 3 gives an algorithm which on input
Markov chain M and parametee determines whether
at least(1 — ¢) fraction of the states oM are smooth
according to two distributions: uniform and the aver-
aget-step distribution. Assuming access kg-Distance-
Test with complexityT (n, ¢, d), this test runs in time
O(e 2t°T (n, ¢, ).

€ 61

Test M xi ng( M, ¢, ¢€)
Let & = O(1/e¢)
Select k states wi,...,ur uniformy
Select k states wugy1,...,uz according to 3m,¢
For i 1to 2k
U = €y,
For w = 1 to O(1/¢)
For j = 1 to 2t
u = next _node(M,u)
L,- Di stance- Test (€,M", 5m,, €, o7)
End
End
For 7 =t to 2t
L,- Di stance- Test (€,,M", 5m.1, €, )
End
Pass if all

tests pass

Figure 3. Algorithm TestMixing

The main lemma of this section says that any Markov
chain which passes our test(i, 1.01¢)-close to &4e, 2t)-
mixing Markov chain. First we give the modification

Definition 22 F'is a function frorn x n matrices ton x n
matrices such thak’(M) returnsM by modifying the rows
corresponding to bad states M to ¢, whereu is a smooth
state.

An important feature of the transformatidnis that it does
not affect the distribution of random walks originatingrfro
smooth states very much.

Lemma 23 Given a Markov chaitM and any state: € M
which is smooth. IM = F(M) then for any time < 7 <
2t, |E€,M™ — &,M7| < eand|sy,: — €,M7| < 2e.

ProoF Definel as the set of all walks of length from
win M. PartitionI into T's andT 5 wherel'; is the subset
of walks which visit a bad state. Legt, ; be an indicator
function which equals 1 if walkw ends at staté and 0 oth-
erwise. Let weight functio (w) be defined as the proba-
bility that walk w occurs. Finally define the primed counter-
partsI”, etc. for the Markov chailVL. Now theith element
of &,MT is ZwEFB Xw,i © W(w) + Zwefa Xw,i * W(’LU)
A similar expression can be written for each element of
&,M". SinceW (w) = W'(w) wheneverw € L it fol-
lows that|e,M"™ — &,M7| < 3,5 1 YW (w) —
W (w)| <32, ZwEFB Xw,i W (w) < e
Additionally, since|sny, — €,M7| < ¢ by the defini-
tion of smooth, it follows thatdw,, — €u1\N/IT| < |8m, —
EMT| + |6, M™ — @,M"| < 2. O
We can now prove the main lemma:

Lemma 24 If according to both the uniform distribution
and the distributionsy ¢, (1 — €) fraction of the states
of a Markov chainM are smooth, then the matri¥ is
(2¢,1.01¢)-close to a matriXM which is(4e, 2t)-mixing.

PROOF Let M = F(M). M andM differ on at
mosten(d 4 1) entries. This gives the first part of our dis-

tance bound. For the second we analij@g, ; — 51\71.¢| =

Ly leMt — &,M!| as follows. The sum is split into
two parts, over the nodes which are smooth and those nodes
which are not. For each of the smooth nodetemma 23
says that/e, M! — &,M!| < e. Nodes which are not
smooth account for at mostfraction of the nodes in the
sum, and thus can contribute no more thaisolute weight

to the distributions, . The sum can be bounded now by

|$M,e — 51\7[ t| < %((1 —e)ne+en) < 2e.

In order to show thaM1 is (4e, 2t)-mixing, we prove that
for every states, |y — €, M?| < 4e. The proof considers
three casesu smooth,u bad, and: normal. The last case
is the most involved.

If u is smooth in the Markov chaiM, then Lemma 23
immediately tells us than; — €,M?!| < 2¢. Similarly
if « is bad in the Markov chaiM, then in the chaitM any
path starting at: transitions to a smooth statén one step.
Since|sm,: — (ZJM%—H < 2¢ by Lemma 23, the desired
bound follows.



If €, is a normal state which is not smooth we need a 4.3. Extension to sparse graphs and uniform distri-

more involved analysis of the dlstr|but|q>EiuM2t| We di-
videT, the set of alR¢-step walks inM starting atu, into
three sets, which we consider separately.

For the first set tak€ g C T" to be the set of walks which
visit a bad node before time Let cZ; be the distribution
over endpoints of these walks, that is, (Eétassign to state
i the probability that any walky € T'p ends at staté. Let
w € I'p be any such walk. liv visits a bad state at time
T < t, then in the new Markov chaiﬁ, w Visits a smooth
statev at timer + 1. Another application of Lemma 23
implies that|€vﬁ2‘f—“1 — &Mt < 2e. Since this is true
for all walksw € I'g, we find|J2, — Sm.t] < 2e.

For the second set, 1€t C I" \ I'g be the set of walks
not in 'z which visit a smooth state at time Let cfs be
the distribution over endpoints of these walks. Any walk
w € I'g is identical in the chaind1 andM up to timet,
and then in the chaiM visits a smooth state at time+.
Thus sincgée, M! — sy 4| < 26, we havdJ; —&m,| < 2e.

Finally letT'y =T\ (I's UTg), and letd,, be the dis-
tribution over endpoints of walks ifiy. I'y consists of a
subset of the walks from a normal nod&vhich do not visit
a smooth node at time By the definition of normaly is
(e, t)-close tosn ¢ in the Markov chairM. By assumption
at moste weight of sy + is assigned to nodes which are not
smooth. Thereford y|/|T'| is at mosk + € = 2e.

Now define the weights of these distributions.asws
andw,. That isw; is the probability that a walk from in
M visits a bad state before tinteSimilarly w, is the prob-
ability that a walk does not visit a bad state before time
but visits a smooth state at tinteandw,, is the probabil-

ity that a walk does not visit a bad state but visits a normal,

non-smooth state at time Thenwl7 Fws+wp =1 Fi-
naIIy |eu1\/12t — &M t| = |wbdb + wedy + wdy — vl <
w|dy — S| + wslds — Snt ] + wnldn — vl < (wp +
ws)max{|dp — Sm.t], |ds — Smt|} + wnldn — SMm | < 4e.
O

Given this, we finally can show our main theorem:

Theorem 25 Let M be a Markov chain. Givenl;-
Distance-Test with time complexi®j(n, e, §) and gap f
and an oracle fomext _node, there exists a test such that
if ML is (f(¢), t)-mixing then the test passes with probability
at least2/3. If M is not(2¢, 1.01¢)-close to anyM which

is (4e, 2t)-mixing then the test fails with probability at least
2/3. The runtime of the test 8(Z% - t2 - T'(n, €, 5;))-

PROOF.  Since in any Markov chaitM which is (e, t)-
mixing all states are smootlVI passes this test with proba-
bility at least(1 — §). Furthermore, any Markov chain with
atleast(1 — ) fraction of smooth states (¢, 1.01¢)-close
to a Markov chain which i$4e, 2¢)-mixing, by Lemma 24.
O

butions

The property test can also be made to work for gen-
eral sparse Markov chains by a simple modification to the
testing algorithms. Consider Markov chains with at most
m << n? nonzero entries, but with no nontrivial bound
on the number of nonzero entries per row. Then the defini-
tion of the distance should be modified &AM, M3) =
(e1,€62) if My and M, differ on €, - m entries and the
M, t — Sm,+ = €2. The above test does not suffice for
testing thafM is (e, e2)-close to an(e, t)-mixing Markov
chain}, since in our proof, the rows corresponding to bad
states may have many nonzero entries and Muand M
may differ in a large fraction of the nonzero entries. How-
ever, letD be a distribution on states in which the probabil-
ity of each state is proportional to cardinality of the sugipo
set of its row. Natural ways of encoding this Markov chain
allow constant time generation of states according td®y
modifying the test in Figure 3 to also test that most states
according taD are smooth, one can show thedtis close to
an (e, t)-mixing Markov chain)/.

Because of our ability to testcloseness to theniform
distribution inO(n'/2¢=2) steps [12], it is possible to speed
up our test for mixing for those Markov chains known to
have uniform stationary distribution, such as Markov chain
corresponding to random walks on regular graphs. An er-
godic random walk on the vertices of an undirected graph
instead may be regarded (by looking at it “at tinigsl /2")
as a random walk on thedge-midpointsf that graph. The
stationary distribution on edge-midpoints always existd a
is uniform. So, for undirected graphs we can speed up mix-
ing testing by using a tester for closeness to uniform distri
bution.

5. Further Research

It would be interesting to study these questions for other
difference measures. For example, the Kullback-Leibler
asymmetric “distance” from Information Theory defined as

s = D
KLdist(p, ¢) = piln—
LUV

3

measures the relative entropy between two distributions.
However, small changes to the distribution can cause great
changes in the Kullback-Leibler distance making distin-
guishing the cases impossible.

Perhaps some variation of Kullback-Leibler distance
might lead to more interesting results. For example, con-
sider the following distance formula

ﬁi

NPdist(p, ¢) = KLdist(p, pra

) + KLdist(q, ;r 4

)-



We can show it is a true metric, has constant valyg&aindg
have disjoint support and cannotincrease if we use the same
Markov chain transition of’ andg. We suspect NPdist is
in some sense “most powerful” for the purpose of deciding [10]
whetherp # ¢.

Russell Impagliazzo also suggests considering weighted

differences, i.e., estimatifgp'— 1|/ max(||p]|, ||¢]|) for var-
ious norms like the.5-norm.

Suppose instead of having two unknown distributions,
we have only one distribution to sample and we want to
know whether it is close to some known fixed distribution
D. If D is the uniform distribution, Goldreich and Ron [12]
give a tight bound o#(\/n). For otherD the question re-
mains open. Ouf2(n?/3) lower bound proof does not ap-

ply.

What if our samples are not fully independent? Our up-
per bound works even if the samples are only four-way in-

dependent. How do our bounds increase if we lack even that

much independence?
Finally our lower and upper bounds do not precisely

match. Can we get tighter bounds with better analysis or
do we need new variations on our tests and/or counterex-

amples?

Smith [25] has some improved bounds and additional ap-

plications of the results in this paper.
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