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Abstract

Given two distributions over ann element set, we wish to
check whether these distributions are statistically closeby
only sampling. We give a sublinear algorithm which uses
O(n2/3ε−4 log n) independent samples from each distribu-
tion, runs in time linear in the sample size, makes no as-
sumptions about the structure of the distributions, and dis-
tinguishes the cases when the distance between the distribu-
tions is small (less thanmax( ε2
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√

n
, ε

4
√

n
)) or large (more

thanε) in L1-distance. We also give anΩ(n2/3ε−2/3) lower
bound.

Our algorithm has applications to the problem of check-
ing whether a given Markov process is rapidly mixing. We
develop sublinear algorithms for this problem as well.

1. Introduction

Suppose we have two distributions over the samen el-
ement set, and we want to know whether they are close to
each other inL1-norm. We assume that we know nothing
about the structure of the distributions and that the only al-
lowed operation is independent sampling. The naive ap-
proach would, for each distribution, sample enough ele-
ments to approximate the distribution and then compare
these approximations. Theorem 14 in Section 3.3 shows
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that the naive approach requires at least a linear number of
samples.

In this paper, we develop a method of testing that the dis-
tance between two distributions is at mostε using consider-
ably fewer samples. If the distributions haveL1-distance
at mostmax( ε2
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) then the algorithm will accept

with probability at least1 − δ. If the distributions haveL1-
distance more thanε then the algorithm will accept with
probability at mostδ. The number of samples used is
O(n2/3ε−4 log n log 1

δ ). We give anΩ(n2/3ε−2/3) lower
bound for testingL1-distance.

Our test relies on a test for theL2-distance, which is con-
siderably easier to test: we give an algorithm that uses a
number of samples which is independent ofn. However,
theL2-distance does not in general give a good measure of
the closeness of two distributions. For example, two distri-
butions can have disjoint support and still have smallL2-
distance. Still, we can get a very good estimate of theL2-
distance and then we use the fact that theL1-distance is at
most

√
n times theL2-distance. Unfortunately, the num-

ber of queries required by this approach is too large in gen-
eral. Because of this, ourL1-test is forced to distinguish
two cases.

For distributions with smallL2-norm, we show how to
use theL2-distance to get a good approximation of theL1-
distance. For distributions with largerL2-norm, we use the
fact that such distributions must have elements which oc-
cur with relatively high probability. We create a filtering
test that estimates theL1-distance due to these high prob-
ability elements, and then approximates theL1-distance
due to the low probability elements using the test forL2-



distance. Optimizing the notion of “high probability” yields
ourO(n2/3ε−4 log n log 1

δ ) algorithm. TheL2-distance test
usesO(ε−4 log(1/δ)) samples.

Applying our techniques to Markov chains, we use the
above algorithm as a basis for constructing tests for deter-
mining whether a Markov chain is rapidly mixing. We show
how to test whether iterating a Markov chain fort steps
causes it to reach a distribution close to the stationary distri-
bution. Our testing algorithm works by following̃O(tn5/3)
edges in the chain. When the Markov chain is represented in
a convenient way (such a representation can be computed in
linear time and we give an example representation in Sec-
tion 4), this test remains sublinear in the size of a dense
enough Markov chain for smallt. We then investigate two
notions of beingcloseto a rapidly mixing Markov chain that
fall within the framework of property testing, and show how
to test that a Markov chain is close to a Markov chain that
mixes int steps by following onlyÕ(tn2/3) edges. In the
case of Markov chains that come from directed graphs and
pass our test, our theorems show the existence of a directed
graph that is close to the original one and rapidly mixing.

Related Work Our results fall within the various frame-
works of property testing [22, 13, 14, 7, 21]. A related work
of Kannan and Yao [17] outlines a program checking frame-
work for certifying the randomness of a program’s output.
In their model, one does not assume that samples from the
input distribution are independent.

There is much work on the problem estimating the dis-
tance between distributions in data streaming models where
space is limited rather than time (cf. [11, 2, 8, 9]). Another
line of work [3] estimates the distance in frequency count
distributions on words between various documents, where
again space is limited.

In an interactive setting, Sahai and Vadhan [23] show
that given distributionsp andq, generated by polynomial-
size circuits, the problem of distinguishing whetherp andq
are close or far inL1-norm, is complete for statistical zero-
knowledge.

There is a vast literature on testing statistical hypotheses.
In these works, one is given examples chosen from the same
distribution out of two possible choices, sayp andq. The
goal is to decide which of two distributions the examples
are coming from. More generally, the goal can be stated as
deciding which of two known classes of distributions con-
tains the distribution generating the examples. This can be
seen to be a generalization of our model as follows: Let the
first class of distributions be the set of distributions of the
form q × q. Let the second class of distributions be the set
of distributions of the formq1 × q2 where theL1 differ-
ence ofq1 andq2 is at leastε. Then, given examples from
two distributionsp1, p2, create a set of example pairs(x, y)
wherex is chosen according top1 andy according top2.
Bounds and an optimal algorithm for the general problem

for various distance measures are given in [4, 19, 5, 6, 18].
None of these give sublinear bounds in the domain size for
our problem. The specific model of singleton hypothesis
classes is studied by Yamanishi [27].

Goldreich and Ron [12] give methods allowing testing
that theL2-distance between a given distribution and the
uniform distribution is small in timeO(

√
n). Their “colli-

sion” idea underlies the present paper. Based on this, they
give a test which they conjecture can be used for testing
whether a regular graph is close to being an expander, where
by close they mean that by changing a small fraction of
the edges they can turn it into an expander. Their test is
based on picking a random node and testing that random
walks from this node reach a distribution that is close to
uniform. Our tests are based on similar principles, but we
do not prove their conjecture. Mixing and expansion are
known to be related [24], but our techniques only apply to
the mixing properties of random walks on directed graphs,
since the notion of closeness we use does not preserve the
symmetry of the adjacency matrix. In another work, Gol-
dreich and Ron [14] show that testing that a graph is close
to an expander requiresΩ(n1/2) queries.

The conductance [24] of a graph is known to be closely
related to expansion and rapid-mixing properties of the
graph [16][24]. Frieze and Kannan [10] show, given a graph
G with n vertices andα, one can approximate the conduc-
tance ofG to within additive errorα in timeO(n2Õ(1/α2)).
Their techniques also yield anO(2poly(1/ε)) time test which
determines whether an adjacency matrix of a graph can be
changed in at mostε fraction of the locations to get a graph
with high conductance. However, for the purpose of test-
ing whether ann-vertex, m-edge graph is rapid mixing,
we would need to approximate its conductance to within
α = O(m/n2); thus only whenm = Θ(n2) would it run in
O(n) time.

It is known that mixing [24, 16] is related to the separa-
tion between the two largest eigenvalues [1]. Standard tech-
niques for approximating the eigenvalues of a densen × n
matrix run in Θ(n3) flops and consumeΘ(n2) words of
memory [15]. However, for a sparsen×n symmetricmatrix
with m nonzero entries,n ≤ m, “Lanczos algorithms” [20]
accomplish the same task inΘ(n[m+logn]) flops, consum-
ing Θ(n + m) storage. Furthermore, it is found in practice
that these algorithms can be run for far fewer, even a con-
stant number, of iterations while still obtaining highly ac-
curate values for the outer and inner few eigenvalues. Our
test for rapid mixing of a Markov chain runs more slowly
than the algorithms that are used in practice except on fairly
dense graphs (m � tn5/3 log n). However, our test is more
efficient than algorithms whose behavior is mathematically
justified at every sparsity level. Our faster, but weaker, tests
of various altered definitions of “rapid mixing,” are more
efficient than the current algorithms used in practice.



2. Preliminaries

We use the following notation. We denote the set
{1, . . . , n} as[n]. The notationx ∈R [n] denotes thatx is
chosen uniformly at random from the set[n]. TheL1-norm
of a vector~v is denoted by|~v| and is equal to

∑n
i=1 |vi|.

Similarly theL2-norm is denoted by‖~v‖ and is equal to√∑n
i=1 v2

i , and‖~v‖∞ = maxi |vi|. We assume our distri-
butions are discrete distributions overn elements, and will
represent a distribution as a vector~p = (p1, . . . , pn) where
pi is the probability of outputting elementi.

Thecollision probabilityof two distributions~p and~q is
the probability that a sample from each of~p and~q yields
the same element. Note that, for two distributions~p, ~q, the
collision probability is~p ·~q =

∑
i piqi. To avoid ambiguity,

we refer to the collision probability of~p and~p as theself-
collision probabilityof ~p, note that the self-collision proba-
bility of ~p is ‖~p‖2.

3. Testing closeness of distributions

The main goal of this section is to show how to test that
two distributions~p and~q are close inL1-norm in sublinear
time in the size of the domain of the distributions. We are
given access to these distributions via black boxes which
upon a query respond with an element of[n] generated ac-
cording to the respective distribution. Our main theorem is:

Theorem 1 Given parameterδ, and distributions ~p, ~q
over a set ofn elements, there is a test which runs
in time O(ε−4n2/3 log n log 1

δ ) such that if |~p − ~q| ≤
max( ε2

32 3
√

n
, ε

4
√

n
), then the test outputspass with prob-

ability at least1 − δ and and if|~p − ~q| > ε, then the test
outputsfail with probability at least1 − δ.

In order to prove this theorem, we give a test which de-
termines whether~p and~q are close inL2-norm. The test is
based on estimating the self-collision and collision proba-
bilities of ~p and~q. In particular, if~p and~q are close, one
would expect that the self-collision probabilities of eachare
close to the collision probability of the pair. Formalizing
this intuition, in Section 3.1, we prove:

Theorem 2 Given parameterδ, and distributions~p and~q
over a set ofn elements, there exists a test such that if‖~p−
~q‖ ≤ ε/2 then the test passes with probability at least1−δ.
If ‖~p−~q‖ > ε then the test passes with probability less than
δ. The running time of the test isO(ε−4 log 1

δ ).

The test used to prove Theorem 2 is given in Figure 1. The
number of pairwise self-collisions in setF is the count of
i < j such that theith sample inF is same as thejth sam-
ple in F . Similarly, the number of collisions betweenQp

andQq is the count of(i, j) such that theith sample inQp

L2-Distance-Test(p, q, m, ε, δ)
Repeat O(log( 1

δ
)) times

Let Fp = a set of m samples from ~p
Let Fq = a set of m samples from ~q

Let rp be the number of pairwise
self-collisions in Fp.

Let rq be the number of pairwise
self-collisions in Fq.

Let Qp = a set of m samples from ~p
Let Qq = a set of m samples from ~q

Let spq be the number of collisions
between Qp and Qq.

Let r = 2m
m−1

(rp + rq)

Let s = 2spq

If r − s > m2ε2/2 then reject
Reject if the majority of iterations reject,
accept otherwise

Figure 1. Algorithm L2-Distance-Test

is same as thejth sample inQq. We use the parameterm
to indicate the number of samples needed by the test to get
constant confidence. In order to bound theL2-distance be-
tween~p and~q by ε, settingm = O( 1

ε4 ) suffices. By main-
taining arrays which count the number of times that each
element is sampled inFp, Fq, one can achieve the claimed
running time bounds. Thus essentiallym2 estimations of
the collision probability can be performed inO(m) time.
Using hashing techniques, one can achieveO(m) with an
expected running time bound matching Theorem 2.

Since|v| ≤ √
n‖v‖, a simple way to extend the above

test to anL1-distance test is by settingε′ = ε/
√

n. Un-
fortunately, due to the order of the dependence onε in the
L2-distance test, the resulting running time is prohibitive.
It is possible, though, to achieve sublinear running times
if the input vectors are known to be reasonably evenly dis-
tributed. We make this precise by a closer analysis of the
variance of the test in Lemma 5. In particular, we ana-
lyze the dependence of the variance ofs on the parameter
b = max(‖~p‖∞, ‖~q‖∞). There we show that given~p and
~q such thatb = O(n−α), one can callL2-Distance-Test
with an error parameter ofε√

n
and achieve running time of

O(ε−4(n1−α/2 + n2−2α)).
We use the following definition to identify the elements

with large weights.

Definition 3 An elementi is called big with respect to a
distribution~p if pi > 1

n2/3 .

Our L1-distance tester calls theL2-distance testing al-
gorithm as a subroutine. When both input distributions
have no big elements, the input is passed to theL2-distance
test unchanged. If the input distributions have a large self-
collision probability, the distances induced respectively by



the big and non-big elements are measured in two steps.
The first step measures the distance corresponding to the big
elements via straightforward sampling, and the second step
modifies the distributions so that the distance attributed to
the non-big elements can be measured using theL2-distance
test. The complete test is given in Figure 2. The proof of
Theorem 1 is described in Section 3.2.

L1-Distance-Test(p, q, ε, δ)
Sample ~p and ~q for

M = O(max(ε−2, 4)n2/3 log n) times
Let Sp and Sq be the sample sets obtained
by discarding elements that occur less
than (1 − ε/63)Mn−2/3 times

If Sp and Sq are empty
L2-Distance-Test(p, q, O(n2/3/ε4), ε

2
√

n
, δ/2)

else
`p
i = # times element i appears in Sp

`q
i = # times element i appears in Sq

Fail if
∑

i
|`p

i − `q
i | > εM/8.

Define ~p′ as follows:
sample an element from ~p
if this sample is not in Sp output it,
otherwise output an x ∈R [n].

Define ~q′ similarly.
L2-Distance-Test(p′, q′, O(n2/3/ε4), ε

2
√

n
, δ/2)

Figure 2. Algorithm L1-Distance-Test

In Section 3.3 we prove thatΩ(n2/3) samples are for
distinguishing distributions that are far inL1-distance.

3.1. Closeness inL2-norm

In this section we analyze the test in Figure 1 and prove
Theorem 2. The statisticsrp, rq ands in Algorithm L2-
Distance-Testare estimators for the self-collision proba-
bility of ~p, of ~q, and of the collision probability between
~p and ~q, respectively. If~p and ~q are statistically close,
we expect that the self-collision probabilities of each are
close to the collision probability of the pair. These prob-
abilities are exactly the inner products of these vectors.
In particular if the setFp of samples from~p is given by
{F 1

p , . . . , Fm
p } then for any pairi, j ∈ [m], i 6= j we have

that Pr
[
F i

p = F j
p

]
= ~p · ~p = ‖~p‖2. By combining these

statistics, we show thatr − s is an estimator for the desired
value‖~p − ~q‖2.

Since our algorithm samples from not one but two dis-
tinct distributions, we must also bound the variance of the
variables used in the test. One distinction to make be-
tween self-collisions and~p, ~q collisions is that for the self-
collision we only consider samples for whichi 6= j, but this
is not necessary for~p, ~q collisions. We accommodate this

in our algorithm by scalingrp andrq appropriately. By this
scaling and from the above discussion we see thatE [s] =
2m2(~p·~q) and thatE [r − s] = m2(‖~p‖2+‖~q‖2−2(~p·~q)) =
m2(‖~p − ~q‖2).

A complication which arises from this scheme, though,
is that the pairwise samples are not independent. Thus we
use Chebyshev’s inequality. That is, for any random vari-
ableA, andρ > 0, the probabilityPr [|A − E[A]| > ρ] is
bounded above byVar[A]

ρ2 . To use this theorem, we require
a bound on the variance, which we give in this section.

Our techniques extend the work of Goldreich and Ron
[12], where self-collision probabilities are used to estimate
norm of a vector, and the deviation of a distribution from
uniform. In particular, their work provides an analysis of
the statisticsrp andrq above through the following lemma.

Lemma 4 (Goldreich Ron) LetA be one ofrp or rq in al-
gorithmL2-Distance-Test. ThenE [A] =

(
m
2

)
· ‖~p‖2 and

Var [A] ≤ 2(E [A])3/2

The variance bound is more complicated, and is given in
terms of the largest weight in~p and~q.

Lemma 5 There is a constantc such thatVar [r − s] ≤
c(m3b2 + m2b), whereb = max(‖~p‖∞, ‖~q‖∞).

PROOF: Let F be the set{1, . . . , m}. For(i, j) ∈ F × F ,
define the indicator variableCi,j = 1 if the ith element
of Qp and thejth element ofQq are the same. Then the
variable from the algorithmspq =

∑
i,j Ci,j . Also define

the notationC̄i,j = Ci,j − E [Ci,j ].
Now Var

[∑
F×F Ci,j

]
= E

[
(
∑

F×F C̄i,j)
2
]

=

E
[∑

i,j(C̄i,j)
2 + 2

∑
(i,j) 6=(k,l) C̄i,jC̄k,l

]
≤ m2(~p · ~q) +

2E
[∑

(i,j) 6=(k,l) C̄i,jC̄k,l

]
.

To analyze the last expectation, we use two facts. First,
it is easy to see, by the definition of covariance, that
E

[
C̄i,jC̄k,l

]
≤ E [Ci,jCk,l]. Secondly, we note thatCi,j

andCk,l are not independent only wheni = k or j = l.
Expanding the sum we get

E




∑

(i,j),(k,l)∈F ×F

(i,j) 6=(k,l)

C̄i,jC̄k,l




= E




∑

(i,j),(i,l)∈F ×F

j 6=l

C̄i,jC̄i,l +
∑

(i,j),(k,j)∈F ×F

i6=k

C̄i,jC̄k,j




≤ E




∑

(i,j),(i,l)∈F ×F

j 6=l

Ci,jCi,l +
∑

(i,j),(k,j)∈F ×F

i6=k

Ci,jCk,j






≤ cm3
∑

`∈[n]

p`q
2
` + p2

`q` ≤ cm3b2
∑

`∈[n]

q` ≤ cm3b2

for some constantc. In order to boundVar [r − s] we
use Lemma 4. SinceVar [r] ≤ cm2b and the variance is
additive for independent random variables, we can write
Var [r − s] ≤ c(m3b2 + m2b).

�

Now using Chebyshev’s inequality, it follows that if we
choosem = O(ε−4), we can achieve an error probability
less than1/3. It follows from standard techniques that with
O(log 1

δ ) iterations we can achieve an error probability at
mostδ.

Lemma 6 For two distributions~p and ~q such thatb =
max(‖~p‖∞, ‖~q‖∞) andm = O((b2 + ε2

√
b)/ε4), if ‖~p −

~q‖ ≤ ε/2, thenL2-Distance-Test(p, q, m, ε, δ) passes with
probability at least1− δ. If ‖~p− ~q‖ > ε thenL2-Distance-
Test(p, q, m, ε, δ) passes with probability less thanδ. The
running time isO(m log(1

δ )).

PROOF: For our statisticA = (r − s) we can say, using
Chebyshev’s inequality, that for some constantk,

Pr [|A − E [A]| > ρ] ≤ k(m3b2 + m2b)

ρ2

Then when‖~p − ~q‖ ≤ ε/2, for one iteration,

Pr [pass] = Pr
[
(r − s) < m2ε2/2

]

≥ Pr
[
|(r − s) − E [r − s] | < m2ε2/4

]

≥ 1 − 4k(m3b2+m2b)
m4ε4

It can be shown that this probability will be at least2/3
wheneverm > c(b2 + ε2

√
b)/ε4 for some constantc. A

similar analysis can be used to show the other direction.
�

3.2. Closeness inL1-norm

TheL1-closeness test proceeds in two stages. The first
phase of the algorithm filters out big elements (as defined
in Definition 3) while estimating their contribution to the
distance|~p − ~q|. The second phase invokes theL2-test on
the filtered distribution, with closeness parameterε

2
√

n
. The

correctness of this subroutine call is given by Lemma 6 with
b = n−2/3. With these substitutions, the number of sam-
plesm is O(ε−4n2/3). The choice of thresholdn−2/3 for
the weight of the big elements arises from optimizing the
running-time trade-off between the two phases of the algo-
rithm.

We need to show that by using a sample of size
O(ε−2n2/3 log n), we can estimate the weights of the big
elements to within a multiplicative factor ofO(ε).

Lemma 7 Let ε ≤ 1/2. In L1-Distance-Test, after per-

forming M = O(n2/3 log n
ε2 ) samples from a distribution

~p, we definēpi = `p
i /M . Then, with probability at least

1 − 1
n , the following hold for alli: (1) if pi ≥ ε2n−2/3

then|p̄i − pi| < ε
63 max(pi, n

−2/3), (2) if pi < ε2n−2/3,
p̄i < (1 − ε/63)n−2/3.

PROOF: We analyze three cases; we use Chernoff
bounds to show that for eachi, with probability at least
1 − 1

n2 , the following holds: (1a) Ifpi > n−2/3 then
|p̄i − pi| < εpi/63. (1b) If ε2n−2/3 < pi ≤ n−2/3

then |p̄i − pi| < εn−2/3/63. (2) If pi < ε2n−2/3 then
p̄i < 3ε2n−2/3. Since, forε ≤ 1/2, 3ε2 ≤ (1 − ε/63), the
lemma follows.

�

Once the big elements are identified, we use the follow-
ing fact to prove the gap in the distances of accepted and
rejected pairs of distributions.

Fact 8 For any vectorv, ‖v‖2 ≤ |v| · ‖v‖∞.

Theorem 9 L1-Distance-Test passes distributions~p, ~q

such that|~p − ~q| ≤ max( ε2

32 3
√

n
, ε

4
√

n
), and fails when

|~p − ~q| > ε. The error probability isδ. The running time of
the whole test isO(ε−4n2/3 log n log(1

δ )).

PROOF: Suppose items (1) and (2) from Lemma 7 hold for
all i, and for both~p and~q. By Lemma 7, this event happens
with probability at least1 − 2

n .
LetS = Sp∪Sq. By our assumption, all the big elements

of both~p and~q are inS, and no element with weight less
thanε2n−2/3 (in either distribution) is inS.

Let ∆1 be theL1-distance attributed to the elements in
S. Let ∆2 = |~p′ − ~q′| (in the case thatS is empty,∆1 = 0,
~p = ~p′ and~q = ~q′).

Notice that∆1 ≤ |~p−~q|. We can show that∆2 ≤ |~p−~q|,
and|~p − ~q| ≤ 2∆1 + ∆2.

The algorithm estimates∆1 in a brute-force manner
to within an additive error ofε/9. The error on the
ith term of the sum is bounded byε63 (max(pi, n

−2/3) +

max(qi, n
−2/3)) ≤ ε

63 (pi + qi + 2n−2/3). Consider the
sum overi of these error terms. Notice that this sum is over
at most2n2/3/(1 − ε/63) elements inS. Hence, the total
additive error is bounded by
∑

i∈S

ε

63
(pi + qi + 2n−2/3) ≤ ε

63
(2 + 4/(1− ε/63)) ≤ ε/9.

Note thatmax(‖~p′‖∞, ‖~q′‖∞) < n−2/3 + n−1. So,
we can use theL2-Distance-Teston ~p′ and~q′ with m =
O(e−4n2/3) as shown by Lemma 6.

If |~p−~q| < ε2

32 3
√

n
then so are∆1 and∆2. The first phase

of the algorithm clearly passes. By Fact 8,‖~p′ − ~q′‖ ≤
ε

4
√

n
. Therefore, theL2-Distance-Testpasses. Similarly,

if |~p − ~q| > ε then either∆1 > ε/4 or ∆2 > ε/2. Either
the first phase of the algorithm or theL2-Distance-Testwill
fail.



To get the running time, note that the time for the
first phase isO(ε−2n2/3 log n) and that the time forL2-
Distance-Testis O(n2/3ε−4 log 1

δ ). It is easy to see that
our algorithm makes an error either when it makes a bad es-
timation of∆1 or whenL2-Distance-Testmakes an error.
So, the probability of error is bounded byδ.

�

We believe we can eliminate thelog n term in Theorem 1
(and Theorem 9). Instead of requiring that we correctly
identify the big and small elements, we allow some mis-
classifications. The filtering test should not misclassify very
many very big and very small elements and a good analysis
should show that our remaining tests will not have signifi-
cantly different behavior.

3.3. Lower Bounds

Theorem 10 Given any test using onlyo(n2/3) samples,
there exist distributions~a and~b of L1-distance 1 such that
the test will be unable to distinguish the case where one
distribution is~a and the other is~b from the case where both
distributions are~a.

PROOF: Fix a testing algorithm that usess = o(n2/3) sam-
ples. Without loss of generality we assume that algorithm is
symmetric, i.e., given two distributions the algorithm will
give the same result for any permutation of the underly-
ing space. Otherwise we could permute the sample space
to maximize the error of the testing algorithm; the result
(including this pre-permutation)would be a symmetric al-
gorithm, and it would have the same failure probability on
worst-case input.

Let us assume thatn is a multiple of four. We define
two distributions~a and~b as follows: (1) For1 ≤ i ≤ n2/3,
ai = bi = 1

2n2/3 . We call these the heavy elements. (2) For
n/2 < i ≤ 3n/4, ai = 2

n andbi = 0. We call these the
light elements of~a. (3) For3n/4 < i ≤ n, bi = 2

n and

ai = 0. We call these the light elements of~b. (4) For the
remainingi, ai = bi = 0.

TheL1-distance of~a and~b is one. We will show that no
symmetric algorithm can distinguish the two.

Lemma 11 (1) With high probability, at mosto(n2/3) of
the heavy elements occur more than twice in the sample
space of both distributions combined. (2) With high proba-
bility, none of the light elements occur more than twice in
the same space of both distributions.

PROOF: For a fixed heavy element of probabilityp =
1

2n2/3 the probability that it appears at least three times is
bounded bys3p3 = o(1), i.e., that is roughlys3 possible
triples each of which are all equal to our element with prob-
ability p3. By linearity of expectation we haveo(n2/3) high
probability elements occurring three times. For the light

elements the same argument giveso(1) low probability ele-
ments occurring three times.

�

The elements which occur three or more times occur
only on the heavy elements which have the same probability
in each distribution. So these cannot help the algorithm dis-
tinguish the distributions. LetH be the random variable de-
noting the number of collisions among the heavy elements.
Let L be the random variable denoting the number of colli-
sions among the light elements. If the algorithm was given
distributions~a and~b the number of collisions it would see
between them would beH . If the algorithm was given the
same distribution~a twice the number of collisions would
be the random variableH + L. The only relevant test a
symmetric algorithm can make is to determine whether the
number of collisions between the distributions comes from
H or H + L.

The expected value ofH is s2/2n2/3. The variance is
θ(s2/n2/3 + s3/n4/3) = θ(s2/n2/3) sinces = o(n2/3).
The standard deviation ofH is

√
θ(s2/n2/3) = θ(s/n1/3).

The expected value and variance ofL is θ(s2/n) =
o(s/n1/3).

Since the expected value and variance ofL are swamped
by the standard deviation ofH and one would expect it is
impossible to distinguish between samples drawn fromH
versusH + L. To see this we need to show thatH has rea-
sonable properties, basically thatH is approximately Gaus-
sian. Letf(h) be the probability thatH = h. We will
derive an exact formula forf(h).

Consider the experiment of puttings indistinguished
balls in b = n2/3 distinguished bags without putting three
in any bag. If we haveh collisions thenh bags get 2 balls,
s − 2h bags get 1 ball andb − s + h bags get no balls. The
number of ways to do this is

b!

(s − 2h)!h!(b − s + h)!
(1)

Since the balls are distinguished we need to multiply Equa-
tion 1 by s!/2h which is the number of ways to put thes
balls intoh bags with 2 balls ands − 2h bags of 1 ball.

We then divide by thebs ways of placings distinguish-
able balls into~b bags to get

f(h) =
b!s!

2h(s − 2h)!(b − s + h)!h!bs

It is useful to consider the ratio off(h) andf(h − 1).

g(h) =
f(h)

f(h − 1)
=

(s − 2h + 1)(s − 2h + 2)

2h(h + b − s)

By Chebyshev’s inequality, we only need to consider the
case thath is within a constant number of standard devia-
tions around the expected value ofH . In this case we have
s = o(n2/3) = o(b) andh = O(s2/b) = O(s(s/b)) =



o(s). We then haveg(h) approximatelys2/2bh. Note
that f achieves its maximum about whereg(h) = 1, i.e.,
h = s2/2b which is the expected value ofH .

There is a constantr such that if for somek, s2/2b −
ks/

√
b ≤ h1 ≤ h2 ≤ s2/2b+ks/

√
b thenf(h1) andf(h2)

are within a factor of1+rk. This follows by approximating
the product of theg(h)’s in this range.

Now we want to show thatH andH + L do not differ
much as distributions. Letu(`) be the probability thatL = `
and v(x) be the probability thatH + L = x. We have
v(x) =

∑
` f(x − `)u(`).

Since the expected value ofL is O(s2/n), by Markov’s
inequality we can get a good approximation tov(x) by only
considering̀ with |`| = O(s2/n). In this rangef(x) and
f(x− `) differ by at most a factor of1+O(s2/n)n1/3/s =
1 + O(s/n2/3) = 1 + o(1). We havev(x) =

∑
`(1 +

o(1))f(x)u(`) = (1 + o(1))f(x)
∑

` u(`) = f(x) +
o(f(x)) since

∑
` u(`) = 1.

The L1-norm of the distance ofH and H + L is∑
x o(f(x)) = o(1) sincef is a probability distribution.

Thus no statistical test can distinguishH andH + L with
nontrivial probability.

�

By appropriately modifying the distributions~a and~b we
can give a stronger version of Theorem 10 with a depen-
dence onε.

Corollary 12 Given any test using onlyo(n2/3/ε2/3) sam-
ples, there exist distributions~a and~b of L1-distanceε such
that the test will be unable to distinguish the case where one
distribution is~a and the other is~b from the case where both
distributions are~a.

We can get a lower bound ofΩ(ε−2) for testing theL2-
Distance with a rather simple proof.

Theorem 13 Given any test using onlyo(ε−2) samples,
there exist distributions~a and~b of L2-distanceε such that
the test will be unable to distinguish the case where one
distribution is~a and the other is~b from the case where both
distributions are~a.

PROOF: Let n = 2, a1 = a2 = 1/2 and b1 =
1/2 − ε/

√
2 andb2 = 1/2 + ε/

√
2. Distinguishing these

distributions is exactly the question of distinguishing a fair
coin from a coin of biasθ(ε) which is well known to require
θ(ε2) coin flips.

�

The next theorem shows that learning a distribution us-
ing sublinear number of samples is not possible.

Theorem 14 Suppose we have an algorithm that draws
o(n) samples from some unknown distribution~b and out-
puts a distribution~c. There is some distribution~b for which
the output~c is such that~b and~c haveL1-distance close to
one.

PROOF: (Sketch) LetAS be the distribution that is uni-
form overS ⊆ {1, . . . , n}. PickS at random among sets of
sizen/2 and run the algorithm onAS . The algorithm only
learnso(n) elements fromS. So with high probability the
L1-distance of whatever distribution the algorithm output
will haveL1-distance fromAS of nearly one.

�

4. Application to Markov Chains

Random walks on Markov chains generate probability
distributions over the states of the chain which are endpoints
of a random walk. We employL1-Distance-Test , described
in Section 3, to test mixing properties of Markov Chains.

Preliminaries/Notation Let M be a Markov chain repre-
sented by the transition probability matrixM. Theuth state
of M corresponds to ann-vector~eu = (0, . . . , 1, . . . , 0),
with a one in only theuth location and zeroes elsewhere.
The distribution generated byt-step random walks starting
at stateu is denoted as a vector-matrix product~euM

t.
Instead of computing such products in our algorithms,

we assume that ourL1-Distance-Test has access to an or-
acle,next node which on input of the stateu responds
with the statev with probabilityM(u, v). Given such an or-
acle, the distribution~eT

uM
t can be generated inO(t) steps.

Furthermore, the oracle itself can be realized inO(log n)
time per query, given linear preprocessing time to compute
the cumulative sumsMc(j, k) =

∑k
i=1 M(j, i). The oracle

can be simulated on inputu by producing a random number
α in [0, 1] and performing binary search over theuth row of
Mc to find v such thatMc(u, v) ≤ α ≤ Mc(u, v + 1).
It then outputs statev. Note that whenM is such that
every row has at mostd nonzero terms, slight modifica-
tions of this yield anO(log d) implementation consuming
O(n + m) words of memory ifM is n × n and hasm
nonzero entries. Improvements of the work given in [26]
can be used to prove that in fact constant query time is
achievable with space consumptionO(n + m) for imple-
mentingnext node given linear preprocessing time.

We say that two statesu andv are(ε, t)-closeif the dis-
tribution generated byt-step random walks starting atu and
v are withinε in the L1 norm, i.e. |~euM

t − ~evM
t| < ε.

Similarly we say that a stateu and a distribution~s are(ε, t)-
close if |~euM

t − ~s| < ε. We sayM is (ε, t)-mixing if all
states are(ε, t)-close to the same distribution:

Definition 15 A Markov chainM is (ε, t)-mixing if a dis-
tribution~s exists such that for all statesu, |~euM

t − ~s| ≤ ε.

For example, ifM is (ε, O(log n log 1/ε))-mixing, thenM
is rapidly-mixing [24]. It can be easily seen that ifM is
(ε, t0)-mixing then it is(ε, t) mixing for all t > t0.

We now make the following definition:



Definition 16 The averaget-step distribution, ~sM,t of a
Markov chainM with n states is the distribution

~sM,t =
1

n

∑

u

~euM
t.

This distribution can be easily generated by pickingu uni-
formly from [n] and walkingt steps from stateu. In an
(ε, t)-mixing Markov chain, the averaget-step distribution
is ε-close to the stationary distribution. In a Markov chain
that is not(ε, t)-mixing, this is not necessarily the case.

Each test given below assumes access to anL1 distance
testerL1-Distance-Test(u, v, ε, δ) which given oracle ac-
cess to distributions~eu, ~ev over the samen element set de-
cides whether|~eu−~ev| ≤ f(ε) or if |~eu−~ev| > ε with con-
fidence1−δ. The time complexity ofL1 test isT (n, ε, δ),
andf is thegapof the tester. The implementation ofL1-
Distance-Test given earlier in Section 3 has gapf(ε) =
ε/(4

√
n), and time complexityT = Õ( 1

ε4 n2/3 log 1
δ ).

4.1. A test for mixing and a test for almost-mixing

We show how to decide if a Markov chain is(ε, t)-
mixing; then we define and solve a natural relaxation of that
problem.

In order to test thatM is (ε, t)-mixing, one can use
L1-Distance-Test to compare each distribution~euM

t with
~sM,t, with error parameterε and confidenceδ/n. The
running time is O(nt · T (n, ε, δ/n)). If every state
is (f(ε)/2, t)-close to some distribution~s, then ~sM,t is
f(ε)/2-close to~s. Therefore every state is(ε, t)-close to
~sM,t. On the other hand, if there is no distribution that
is (ε, t)-close to all states, then, in particular,~sM,t is not
(ε, t)-close to at least one state. We have shown

Theorem 17 Let M be a Markov chain. GivenL1-
Distance-Test with time complexityT (n, ε, δ) and gapf
and an oracle fornext node, there exists a test with time
complexityO(nt · T (n, ε, δ/n)) with the following behav-
ior: If M is (f(ε)/2, t)-mixing thenPr [M passes] > 1−δ;
if M is not(ε, t)-mixing thenPr [M passes] < δ.

For the implementation ofL1-Distance-Test given in Sec-
tion 3 the running time isO( 1

ε4 n5/3t log n log 1
δ ). It dis-

tinguishes between chains which areε/(4
√

n) mixing and
those which are notε-mixing. The running time is sublinear
in the size ofM if t ∈ o(n1/3/ log(n)).

A relaxation of this procedure is testing thatmoststarting
states reach the same distribution aftert steps. If(1 − ρ)
fraction of the statesu of a givenM satisfy|~s−~euM

t| ≤ ε,
then we say thatM is (ρ, ε, t)-almost mixing. By picking
O(1/ρ · ln(/δ)) starting states uniformly at random, and
testing their closeness to~sM,t we have:

Theorem 18 Let M be a Markov chain. GivenL1-
Distance-Test with time complexityT (n, ε, δ) and gapf

and an oracle fornext node, there exists a test with
time complexityO( t

ρT (n, ε, δρ) log 1
δ ) with the follow-

ing behavior: If M is (ρ, f(ε)/2, t)-almost mixing then
Pr [M passes] > 1 − δ; If M is not (ρ, ε, t)-almost mix-
ing thenPr [M passes] < δ.

4.2. A Property Tester for Mixing

The main result of this section is a test that determines if
a Markov chain’s matrix representation can be changed in
anε fraction of the non-zero entries to turn it into a(4ε, 2t)-
mixing Markov chain. This notion falls within the scope of
property testing [22, 13, 14, 7, 21], which in general takes
a setS with distance function∆ and a subsetP ⊆ S and
decides if an elementsx ∈ S is in P or if it is far from
every element inP , according to∆. For the Markov chain
problem, we take as our setS all matricesM of sizen × n
with at mostd non-zero entries in each row. The distance
function is given by the fraction of non-zero entries in which
two matrices differ, and the difference in their averaget-step
distributions.

Definition 19 Let M1 and M2 be n-state Markov chains
with at mostd non-zero entries in each row. Define distance
function∆(M1,M2) = (ε1, ε2) iff M1 andM2 differ on
ε1dn entries and|~sM1,t−~sM2,t| = ε2. We say thatM1 and
M2 are (ε1, ε2)-close if∆(M1,M2) ≤ (ε1, ε2).1

A natural question is whether all Markov chains areε-
close to an(ε, t)-mixing Markov chain, for certain param-
eters ofε. For constantε andt = O(log n), one can show
that every strongly-connected Markov chain is(ε, 1)-close
to another Markov chain which(ε, t)-mixes. However, the
situation changes when asking whether there is an(ε, t)-
mixing Markov chain that is close both in the matrix rep-
resentation and in the averaget-step distribution: specifi-
cally, it can be shown that there exist constantsε, ε1, ε2 < 1
and Markov chainM for which no Markov chain is both
(ε1, ε2)-close toM and(ε, log n)-mixing. In fact, whenε1
is small enough, the problem becomes nontrivial even for
ε2 = 1. The Markov chain corresponding to random walks
on then-cycle provides an example which is not(t−1/2, 1)-
close to any(ε, t)-mixing Markov chain.

Motivation As before, our algorithm proceeds by taking
random walks on the Markov chain and comparing final dis-
tributions by using theL1 distance tester. We define three
types of states. First anormalstate is one from which a ran-
dom walk arrives at nearly the averaget-step distribution.
In the discussion which follows,t andε denote constant pa-
rameters fixed as input to the algorithmTestMixing.

1We say(x, y) ≤ (a, b) iff x ≤ a andy ≤ b



Definition 20 Given a Markov ChainM, a stateu of the
chain is normal if it is (ε, t)-close to~sM,t. That is if
|~euM

t − ~sM,t| ≤ ε. A state isbadif it is not normal.

Testing normality requires timeO(t ·T (n, ε, δ)). Using this
definition the first two algorithms given in this section can
be described as testing whether all (resp. most) states in
M arenormal. Additionally, we need to distinguish states
which not only produce random walks which arrive near
~sM,t but which have low probability of visiting a bad state.
We call such statessmoothstates:

Definition 21 A state~eu in a Markov chainM is smooth
if (a) u is (ε, τ)-close to~sM,t for τ = t, . . . , 2t and (b) the
probability that a2t-step random walk starting at~eu visits
a bad state is at mostε.

Testing smoothness of a state requiresO(t2 · T (n, ε, δ))
time. Our property test merely verifies by random sampling
that most states are smooth.

The test Figure 3 gives an algorithm which on input
Markov chain M and parameterε determines whether
at least(1 − ε) fraction of the states ofM are smooth
according to two distributions: uniform and the aver-
aget-step distribution. Assuming access toL1-Distance-
Test with complexityT (n, ε, δ), this test runs in time
O(ε−2t2T (n, ε, 1

6t )).

TestMixing(M, t, ε)
Let k = Θ(1/ε)
Select k states u1, . . . , uk uniformly
Select k states uk+1, . . . , u2k according to ~sM,t

For i = 1 to 2k
u = ~eui

For w = 1 to O(1/ε)
For j = 1 to 2t

u = next node(M, u)
L1-Distance-Test(~euM

t, ~sM,t, ε,
1

6t
)

End
End
For τ = t to 2t

L1-Distance-Test(~euiM
τ , ~sM,t, ε,

1

3t
)

End
Pass if all tests pass

Figure 3. Algorithm TestMixing

The main lemma of this section says that any Markov
chain which passes our test is(2ε, 1.01ε)-close to a(4ε, 2t)-
mixing Markov chain. First we give the modification

Definition 22 F is a function fromn×n matrices ton×n

matrices such thatF (M) returnsM̃ by modifying the rows
corresponding to bad states ofM to~eu whereu is a smooth
state.

An important feature of the transformationF is that it does
not affect the distribution of random walks originating from
smooth states very much.

Lemma 23 Given a Markov chainM and any stateu ∈ M

which is smooth. If̃M = F (M) then for any timet ≤ τ ≤
2t, |~euM

τ − ~euM̃
τ | ≤ ε and|~sM,t − ~euM̃

τ | ≤ 2ε.

PROOF: DefineΓ as the set of all walks of lengthτ from
u in M. PartitionΓ into ΓB andΓ̄B whereΓB is the subset
of walks which visit a bad state. Letχw,i be an indicator
function which equals 1 if walkw ends at statei, and 0 oth-
erwise. Let weight functionW (w) be defined as the proba-
bility that walkw occurs. Finally define the primed counter-
partsΓ′, etc. for the Markov chaiñM. Now theith element
of ~euM

τ is
∑

w∈ΓB
χw,i · W (w) +

∑
w∈Γ̄B

χw,i · W (w).
A similar expression can be written for each element of
~euM̃

τ . SinceW (w) = W ′(w) wheneverw ∈ Γ̄B it fol-
lows that|~euM

τ − ~euM̃
τ | ≤

∑
i

∑
w∈ΓB

χw,i|W (w) −
W ′(w)| ≤ ∑

i

∑
w∈ΓB

χw,iW (w) ≤ ε.
Additionally, since|~sM,t − ~euM

τ | ≤ ε by the defini-

tion of smooth, it follows that|~sM,t − ~euM̃
τ | ≤ |~sM,t −

~euM
τ | + |~euM

τ − ~euM̃
τ | ≤ 2ε.

�

We can now prove the main lemma:

Lemma 24 If according to both the uniform distribution
and the distribution~sM,t, (1 − ε) fraction of the states
of a Markov chainM are smooth, then the matrixM is
(2ε, 1.01ε)-close to a matrix̃M which is(4ε, 2t)-mixing.

PROOF: Let M̃ = F (M). M̃ and M differ on at
mostεn(d + 1) entries. This gives the first part of our dis-
tance bound. For the second we analyze|~sM,t − ~s

M̃,t
| =

1
n

∑
u |~euM

t − ~euM̃
t| as follows. The sum is split into

two parts, over the nodes which are smooth and those nodes
which are not. For each of the smooth nodesu, Lemma 23
says that|~euM

t − ~euM̃
t| ≤ ε. Nodes which are not

smooth account for at mostε fraction of the nodes in the
sum, and thus can contribute no more thanε absolute weight
to the distribution~s

M̃,t
. The sum can be bounded now by

|~sM,t − ~s
M̃,t

| ≤ 1
n ((1 − ε)nε + εn) ≤ 2ε.

In order to show that̃M is (4ε, 2t)-mixing, we prove that
for every stateu, |~sM,t−~euM

2t| ≤ 4ε. The proof considers
three cases:u smooth,u bad, andu normal. The last case
is the most involved.

If u is smooth in the Markov chainM, then Lemma 23
immediately tells us that|~sM,t − ~euM̃

2t| ≤ 2ε. Similarly

if u is bad in the Markov chainM, then in the chaiñM any
path starting atu transitions to a smooth statev in one step.
Since|~sM,t − ~evM̃

2t−1| ≤ 2ε by Lemma 23, the desired
bound follows.



If ~eu is a normal state which is not smooth we need a
more involved analysis of the distribution|~euM̃

2t|. We di-
vide Γ, the set of all2t-step walks inM starting atu, into
three sets, which we consider separately.

For the first set takeΓB ⊆ Γ to be the set of walks which
visit a bad node before timet. Let ~db be the distribution
over endpoints of these walks, that is, let~db assign to state
i the probability that any walkw ∈ ΓB ends at statei. Let
w ∈ ΓB be any such walk. Ifw visits a bad state at time
τ < t, then in the new Markov chaiñM, w visits a smooth
statev at timeτ + 1. Another application of Lemma 23
implies that|~evM̃

2t−τ−1 − ~sM,t| ≤ 2ε. Since this is true
for all walksw ∈ ΓB, we find|~db − ~sM,t| ≤ 2ε.

For the second set, letΓS ⊆ Γ \ ΓB be the set of walks
not in ΓB which visit a smooth state at timet. Let ~ds be
the distribution over endpoints of these walks. Any walk
w ∈ ΓS is identical in the chainsM andM̃ up to timet,
and then in the chaiñM visits a smooth statev at time t.
Thus since|~evM̃

t −~sM,t| ≤ 2ε, we have|~ds −~sM,t| ≤ 2ε.
Finally let ΓN = Γ \ (ΓB ∪ ΓS), and let~dn be the dis-

tribution over endpoints of walks inΓN . ΓN consists of a
subset of the walks from a normal nodeu which do not visit
a smooth node at timet. By the definition of normal,u is
(ε, t)-close to~sM,t in the Markov chainM. By assumption
at mostε weight of~sM,t is assigned to nodes which are not
smooth. Therefore|ΓN |/|Γ| is at mostε + ε = 2ε.

Now define the weights of these distributions asωb, ωs

andωn. That isωb is the probability that a walk fromu in
M visits a bad state before timet. Similarlyωs is the prob-
ability that a walk does not visit a bad state before timet,
but visits a smooth state at timet, andωn is the probabil-
ity that a walk does not visit a bad state but visits a normal,
non-smooth state at timet. Thenωb + ωs + ωn = 1. Fi-
nally |~euM̃

2t − ~sM,t| = |ωb
~db + ωs

~ds + ωn
~dn − ~sM,t| ≤

ωb|~db − ~sM,t| + ωs|~ds − ~sM,t| + ωn|~dn − ~sM,t| ≤ (ωb +

ωs)max{|~db − ~sM,t|, |~ds − ~sM,t|} + ωn|~dn − ~sM,t| ≤ 4ε.
�

Given this, we finally can show our main theorem:

Theorem 25 Let M be a Markov chain. GivenL1-
Distance-Test with time complexityT (n, ε, δ) and gapf
and an oracle fornext node, there exists a test such that
if M is (f(ε), t)-mixing then the test passes with probability
at least2/3. If M is not(2ε, 1.01ε)-close to anỹM which
is (4ε, 2t)-mixing then the test fails with probability at least
2/3. The runtime of the test isO( 1

ε2 · t2 · T (n, ε, 1
6t )).

PROOF: Since in any Markov chainM which is (ε, t)-
mixing all states are smooth,M passes this test with proba-
bility at least(1 − δ). Furthermore, any Markov chain with
at least(1− ε) fraction of smooth states is(2ε, 1.01ε)-close
to a Markov chain which is(4ε, 2t)-mixing, by Lemma 24.
�

4.3. Extension to sparse graphs and uniform distri-
butions

The property test can also be made to work for gen-
eral sparse Markov chains by a simple modification to the
testing algorithms. Consider Markov chains with at most
m << n2 nonzero entries, but with no nontrivial bound
on the number of nonzero entries per row. Then the defini-
tion of the distance should be modified to∆(M1, M2) =
(ε1, ε2) if M1 and M2 differ on ε1 · m entries and the
~sM1,t − ~sM2,t = ε2. The above test does not suffice for
testing thatM is (ε1, ε2)-close to an(ε, t)-mixing Markov
chainM̃ , since in our proof, the rows corresponding to bad
states may have many nonzero entries and thusM andM̃
may differ in a large fraction of the nonzero entries. How-
ever, letD be a distribution on states in which the probabil-
ity of each state is proportional to cardinality of the support
set of its row. Natural ways of encoding this Markov chain
allow constant time generation of states according toD. By
modifying the test in Figure 3 to also test that most states
according toD are smooth, one can show thatM is close to
an(ε, t)-mixing Markov chainM̃ .

Because of our ability to testε-closeness to theuniform
distribution inO(n1/2ε−2) steps [12], it is possible to speed
up our test for mixing for those Markov chains known to
have uniform stationary distribution, such as Markov chains
corresponding to random walks on regular graphs. An er-
godic random walk on the vertices of an undirected graph
instead may be regarded (by looking at it “at timest+1/2”)
as a random walk on theedge-midpointsof that graph. The
stationary distribution on edge-midpoints always exists and
is uniform. So, for undirected graphs we can speed up mix-
ing testing by using a tester for closeness to uniform distri-
bution.

5. Further Research

It would be interesting to study these questions for other
difference measures. For example, the Kullback-Leibler
asymmetric “distance” from Information Theory defined as

KLdist(~p, ~q) =
∑

i

pi ln
pi

qi

measures the relative entropy between two distributions.
However, small changes to the distribution can cause great
changes in the Kullback-Leibler distance making distin-
guishing the cases impossible.

Perhaps some variation of Kullback-Leibler distance
might lead to more interesting results. For example, con-
sider the following distance formula

NPdist(~p, ~q) = KLdist(~p,
~p + ~q

2
) + KLdist(~q,

~p + ~q

2
).



We can show it is a true metric, has constant value if~p and~q
have disjoint support and cannot increase if we use the same
Markov chain transition of~p and~q. We suspect NPdist is
in some sense “most powerful” for the purpose of deciding
whether~p 6= ~q.

Russell Impagliazzo also suggests considering weighted
differences, i.e., estimating‖~p−~q‖/ max(‖~p‖, ‖~q‖) for var-
ious norms like theL2-norm.

Suppose instead of having two unknown distributions,
we have only one distribution to sample and we want to
know whether it is close to some known fixed distribution
D. If D is the uniform distribution, Goldreich and Ron [12]
give a tight bound ofθ(

√
n). For otherD the question re-

mains open. OurΩ(n2/3) lower bound proof does not ap-
ply.

What if our samples are not fully independent? Our up-
per bound works even if the samples are only four-way in-
dependent. How do our bounds increase if we lack even that
much independence?

Finally our lower and upper bounds do not precisely
match. Can we get tighter bounds with better analysis or
do we need new variations on our tests and/or counterex-
amples?

Smith [25] has some improved bounds and additional ap-
plications of the results in this paper.
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