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Abstract

In this paper, we show that for several clustering problems one can extract a small set of
points, so that using thosecore-setsenable us to perform approximate clustering efficiently.
The surprising property of those core-sets is that their size is independent of the dimension.

Using those, we present a
�
1� ε�-approximation algorithms for thek-center clustering and

k-median clustering problems in Euclidean space. The running time of the new algorithms has
linear or near linear dependency on the number of points and the dimension, and exponential
dependency on 1�ε andk. As such, our results are a substantial improvement over what was
previously known.

We also present some other clustering results including
�
1 � ε�-approximate 1-cylinder

clustering, andk-center clustering with outliers.

1 Introduction

Clustering is one of the central problems in computer-science. It is related to unsupervised learn-
ing, classification, databases, spatial range-searching,data-mining, etc. As such, it received a lot
of attention in computer-science in the last twenty years. There is a large literature on this topic
with numerous variants, see [DHS01, BE97].

In this paper, we present several results on clustering of a set of pointsP in � d , where the
dimensiond is large. All our results rely on a new technique that extracta small subset of points
that “represents” this point-setε-well as far as specific clustering problems are concerned. The
surprising property of those sets is that their size isindependentof the dimension. The existence
of such core-sets for various approximation problems was known before, but their size depended
polynomially or exponentially on the dimension [MOP01, ADPR00, Har01, HV01, IT00].

Using this new technique, we present the following results in this paper:
�
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� In Section 2, we show that one can extract a core-set of sizeO
�
1�ε2�, so that the minimum

enclosing ball of the sample is an
�
1� ε�-approximation to the minimum enclosing ball of

a set of pointsP � � d . Using this core-set, we present a 2O��k logk��ε2� 	dn time algorithm
that computes an

�
1� ε�-approximatek-center clustering ofP, i.e., finds a set ofk points in

� d such that the maximum distance of points inP to their closest center is minimized. No
algorithm for this problem has been previously known, although (as pointed out in [Ind01])
by using the techniques of [OR00] one could achieve a much slower algorithm with running
timenO�k2�ε2�. For lower dimension, Agarwal and Procopiuc [AP98] showed aO

�
nlogk� ��

k�ε�O�dk1
1�d � time algorithm for this problem.

Fork� 1, the core-set technique yields an algorithm with running timeO dn�ε2 � �
1�ε�O�1��.

This significantly improves previously known bounds (obtained via ellipsoid algorithm) of
O

�
d 3nlog

�
1�ε�� [GLS88].

� In Section 3, we show that by using random sampling, one can find anO
�
1�εO�1��-size set of

pointsR, such that the flat spanned by those points contains a pointε-close to the 1-median
of the point-set. The only previous result of this type [IT00] used a sample of size linearly
dependent on the dimension. Using the sampling technique, we present a

2�k�ε�O�1�dO�1�nlogO�k� n
expected time algorithm that computes a

�
1� ε�-approximation to the optimalk-median forP

(i.e., findsk points-medians in� d , such that the sum of the distances from all pointsP to their
closest medians is minimized). Previously, the fastest known algorithm with polynomial
dependence ond was due to Ostrovsky and Rabani [OR00] and it ran inn�k�1�ε�O�1� time.
For relevant results, see [ARR98].

� In Section 5, we present an
�
1 � ε�-approximation algorithm for the problem of comput-

ing the minimum radius cylinder that coversP. The running time of the new algorithm is
nO�log�1�ε��ε2�. The fastest algorithm previously known run inO

�
n� 1�εO�d� � time [HV01],

which is exponential in the dimension. The algorithm combines the use of a core-set for 1-
center, dimensionality reduction (to reduce the search space, in a manner similar to [OR00])
and convex programming.

� Section 4 we present an efficient algorithm for solvingk-center problem withoutliers.

Concluding remarks are given in Section 6.

2 k-center clustering

In this section, we present an efficient approximation algorithm for thek-center problem.

Definition 2.1 For a point-setP in � d , let rcen
�
P�k� denote the radius of thek-center clustering of

P. Here one wishes to find thek centers (i.e., points), so that the maximum distance of a point to a
center is minimized. This distance the radius of the clustering.

2



��
����

�

��

�

�

Figure 1: If the two centersci�1 �ci are far, then the radius of the min-enclosing ball must grow.

We start from restating the following lemma, proved originally in [GIV01]. For completeness,
we give the proof here.

Lemma 2.2 Let B � Ball
�
cB �r � be a minimum enclosing ball of a point-set P

� � d , then any
closed half-space that contains the center of B, must also contain at least a point from P that is at
distance r from the center of B.

Proof: Suppose there exists a closed half-spaceH that contains the center ofB and does not contain
any point ofP of distancer from the centercB. SinceH is closed, there exist anε 	 0 such that
the minimum distance between the points ofP 
H andH is 	 ε. Also, fix ε such that the distance
between any of the points inP� H andcB is at mostr � ε. This means we can translate the ball
B in the direction perpendicular toH by ε�2. After we translateB, none of the points ofP will lie
exactly on the boundary of the translated ball, which means we can shrink the ball radius byδ and
we have found a smaller ball that contains our point-set. A contradiction.

Now we proceed with the core-set result.

Lemma 2.3 There exist a subset of points S
�

P, S � O
�
1�ε2�, such that the radius of the mini-

mum enclosing ball of S is at least1� �1� ε� the minimum enclosing ball of P.

Proof: Start with an arbitrary pointx � P and lety be the furthest point inP away fromx.
Clearly, �x� y� � ∆�2, where∆ denotes the diameter ofP.

SetS0 � �x�y�. In the following, we maintain a setSi of points and their minimum enclosing
ball Bi � Ball

�
ci �r i

� of Si , whereci �r i denotes the center and radius ofBi , respectively. Clearly,
r0 � ∆�4.

There are two possibilities:

� If there is no pointp � P, such that�p� ci � � �
1� ε�r i , then we are done, as the current

enclosing ballBi is a
�
1� ε�-approximation.

� There exist a pointp � P, such that�p� ci � � �
1� ε�r i

In this case we setSi�1 � Si � �p�.
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Claim 2.4 r i�1 �
�
1� ε2

16� r i.

Proof: If �ci � ci�1� � �
ε�2�r i, then by the triangle inequality, we have

�p� ci�1� � �p� ci � � �ci � ci�1� � �
1� ε�r i � ε

2
r i � 1� ε

2
� r i �

Otherwise, if�ci � ci�1� � �
ε�2�r i then letH be the

�
d � 1�-dimensional

hyperplane that passes throughci and is orthogonal tocici�1. Let H� be
the open half-space havingp inside it. See Figure 1.
Using Lemma 2.2 we know that there exist a pointx at distancer i from ci

that is not inH�. Therefore

r i�1 � �ci�1 � x� � �r2
i � ε2

4
r2
i �

�
1� ε2

16� r i �
as 0� ε � 1.

Sincer0 � ∆�4, and at each step we increase the radius of our solution by atleast
�
∆�4�ε2�16 �

∆ε2�64, it follows that we cannot encounter this case more than 64�ε2 times, as∆ is an upper
bound of the radius of the minimum enclosing ball ofP.

Theorem 2.5 For any point-set P� � d and 1 	 ε 	 0, there is a subset S� P, S � O
�
1�ε2�,

such that if o is the1-center for S, then o is a
�
1� ε�-approximate1-center for P. The set S can be

found in time O
�
dn�ε2 � �

1�ε�10log
�
1�ε��.

Proof: The algorithm follows the proof of Lemma 2.3. This requires computingM � O
�
1�ε2�

times
�
1� ε�-approximate enclosing ball of at mostN � O

�
1�ε2� points inD � O

�
1�ε2� dimen-

sions. This can be done inO
�
MD3N log

�
1�ε�� � O

�
1�ε10log

�
1�ε�� time, using convex program-

ming techniques [GLS88]. This also requires scanning the pointsM times, which takesO
�
nd�ε2�

time overall.

Theorem 2.6 For any point-set P� � d and1 	 ε 	 0, a
�
1� ε�-approximate2-center for P can

be found in2O�1�ε2�dn time.

Proof: We start from two empty sets of pointsS1 �S2. At each stage letB1�B2 denote the
smallest enclosing ball forS1 and S2. In the i-th iteration, we pick the pointpi furthest away
from B1 andB2. To decide whether to putpi in S1 or in S2, we read a bit from a guessing oracle.
Clearly, by Theorem 2.5, afterO

�
1�ε2� iterations we would be done, assuming our guessing oracle,

classified the required points correctly. Thus, the runningtime of this algorithm isO
�
dn�ε2 ��

1�ε�10�.
To remove the guessing oracle, we exhaustively enumerate all possible guesses. This would

require running this algorithm 2O�1�ε2� times, once for each guess sequence. Overall, resulting in
dn2O�1�ε2� running time.

Theorem 2.7 For any point-set P� � d and1 	 ε 	 0, a
�
1� ε�-approximate k-center for P can

be found in2O��k logk��ε2�dn time.
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Proof: Follows by a straightforward extension of the algorithm of Theorem 2.6, where each
guess now is a number between 1 andk, and we have to generateO

�
k�ε2� guesses.

3 k-median clustering

In this section, we present an efficient approximation algorithm for thek-median problem.

Definition 3.1 For a setX and a pointy in � d , let dist
�
X �p� � minx�X �x� p�. For a setP of n

points in� d , let
medopt

�
P�k� � min

K��d � �K ��k
∑
p�P

dist
�
K �p�

denote the optimal price of thek-median problem. Let

AvgMed
�
P�k� � medopt

�
P�k�� P

denote the average radius of thek-median clustering.
For any setsA�B � P, we use the notation

cost
�
A�B� � ∑

a�A�b�B

�a� b� �
If A � �a�, we write cost

�
a� 	� instead of cost

��a� � 	�; similarly for b. Moreover, we define cost
�
x�

y�A� � ∑a�Amin
��a� x� � �a� y��.

For a set of pointsX
� � d , let span

�
X� denote the affine subspace spanned by the points ofX.

We refer to span
�
X� as theflat spanned byX.

Theorem 3.2 Let P be a point-set in� d , 1 	 ε 	 0, and let X be a random sample of O
�
1�ε3 log1�ε�

points from P. Then with constant probability, the following two events happen: (i) The flat
span

�
X� contains a

�
1� ε�-approximate1-median for P, and (ii) X contains a point in distance�

2AvgMed
�
P�1� from the center of the optimal solution.

Proof: Let medopt � medopt
�
P�1� be the price of the optimal 1-median,R � AvgMed

�
P�1�,

β � ε�16, ands1� � � � �su be our random sample. In the following, we are going to partition the
random sample into rounds: A round continues till we sample apoint that has some required
property. The first round continues till we encounter a pointsi , such that��si � copt ��

�
2R, where

copt is the center of the optimal 1-median. By the Markov inequality, for any samplesi we have
��si � copt ��

�
2R, with probability� 1�2, asE 	��si � copt ��


 � R.
Let’s assume thatsi is a sample that just terminated a round, and we start a new sampling

round, andFi is the flat spanned by the firsti points in our sample:s1 � � � � �si . Observe that if
dist

�
Fi �copt

� � εR, then we are done, as the point proj
�
copt �Fi

� is the required approximation,
where proj

�
copt �Fi

� denote the projection ofcopt into Fi.
Note, that the distance fromcopt to Fi is monotone decreasing. That isdi�1 � dist

�
Fi�1�copt

� �
di � dist

�
Fi �copt

�. We would next argue that either after taking enough sample points,di is small
enough so that we can stop, or otherwise almost all the pointsof P lie very close to our spanned
subspace, and we can use it to find our solution.
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Figure 2: A round terminates as soon as we pick a point outsideUi.

Indeed, letci � proj
�
copt �Fi

�, and let

Ui � �
x ���x � � d s.t. π�2� β � �

coptcix
� π�2� β � �

be the complement of the cone of angleπ � β emanating fromci , and havingcicopt as its axis. See
Figure 2. LetHi be the

�
d � 1�-dimensional hyperplane passing throughci and perpendicular to

cicopt. For a pointp � P, let xp be the distance ofp to the line� i passing throughcopt andci , and
let yp be the distance betweenp andHi .

If p � Ui , then

yp
�

xp tanβ �
xp

sinβ
cosβ

�
4βxp

� εxp

4
� ε

4
��p� copt �� �

asβ � 1�16. In particular,

�p� ci � �
xp � yp

� �
1� ε�4� ��p� copt �� �

Namely, if we move our center fromcopt to ci , the error generated by points insideUi is smaller
than medoptε�4.

Thus, if the number of points inQi � P 
Ui is smaller thannε�4, then we are done, as the
maximum error encountered for a point ofQi when moving the center fromcopt to ci is at most 2R.

Thus, it must be thatQi  � nε�4. We now perform a round of random sampling till we pick a
point that is inQi . Let sj � Qi be this sample point, wherej 	 i. Clearly, the linel connectingci

to sj must belong toFj , asci � Fi � Fj . Now, the angle betweenl and� i � line
�
ci �copt

� is smaller
thanπ�2� β. Namely,

dist
�
Fj �copt

� �
dist

�
l �copt

� � ��copt � ci ��sin
�
π�2� β� � ��copt � ci ��cos

�
β�

� �
1� β2�4� ��copt � ci ��� �
1� β2�4�dist

�
Fi �copt

� �
Thus, after each round, the distance betweenFi andcopt shrinks by a factor of

�
1� β2�4�. Namely,

either we are close to the optimal center, or alternatively,we make reasonable progress in each
round.

In the first round, we picked a pointsu such that��su � copt ��
�

2R. Either during our sampling,
we had dist

�
Fi �copt

� � εR, or alternatively, we had reduced in each round the distancebetween our
sample flat andcopt by a factor of

�
1� β2�4�. On the other hand, once this distance drops below
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εR, we stop, as we had found a point that belongs toFi and provide a
�
1� ε�-approximate solution.

Furthermore, as long asQi  � εn�4, the probability of success is at leastε�4. Thus, the expected
number of samples in a round till we pick a point ofQi (and thus terminating thei-th round) is�
4�ε�. The number of rounds we need is

M � �log1�β2�4 ε
2� � � log

�
ε�2�

log
�
1� β2�4�� � O

�
1
ε2 log

2
ε� �

Let X be the random variable which is the number of random samples till get M successes. Clearly,
E 	X
 � O

�
1�ε3 log1�ε�. It follows, by the Markov inequality, that with constant probability, if

we sampleO
�
1�ε3 log

�
1�ε�� points, then those points span a subspace that contains a

�
1 � ε�-

approximate 1-median center.
We are next interested in solving thek-median problem for a set of points in� d . We first

normalize the point-set.

Lemma 3.3 Given a point-set P in� d , and a parameters k�ε, one can can scale-up space and
compute a point-set P�, such that: (i) The distance between any two points in P� is at least one.
(ii) The optimal k-median cost of the modified data set is at most nb for b � O

�
1�, where n� P.

(iii) The costs of any k-median solutions in both (old and modified) data sets are the same up to a
factor of

�
1� ε�5�. This can be done in O

�
nkd� time.

Proof: Observe that by using Gonzalez [Gon85] 2-approximation algorithm to thek-center
clustering, we can compute inO

�
nkd� time a valueL (the radius of the approximatek-center

clustering), such thatL�2
�

medopt
�
P�k� �

nL.
We cover space by a grid of sizeLε� �5nd�, and snap the points ofP to this grid. After scaling,

this is the required point-set.
From this point on, we assume that the given point-set is normalized.

Theorem 3.4 Let P be a normalized set of n points in� d , 1 	 ε 	 0, and let R be a random sample

of O
�
1�ε3 log1�ε� points from P. Then one can compute, in Od2O�1�ε4� logn� time, a point-set

S
�
P�R� of cardinality O2O�1�ε4� logn�, such that with constant probability (over the choice of R),

there is a point q� S
�
P�R� such that cost

�
q�P� � �

1� ε�medopt
�
P�1�.

Proof: Let’s assume that we had found at such thatt�2
�

AvgMed
�
P�1� �

t. Clearly, we can
find such at by checking all possible values oft � 2i, for i � 0� � � � �O�

logn�, asP is a normalized
point-set (see Lemma 3.3).

Next, by Theorem 3.2, we know that with constant probability, there is a point ofR with
distance

�
2AvgMed

�
P�1� �

2t from the optimal 1-median centercopt of P. Let H � span
�
R�

denote the affine subspace spanned byR.
Note, that by Theorem 3.2, with constant probability, the flat H contains a pointx such that

cost
�
x�P� � �

1� ε�4�medopt
�
P�1�. We next use exponential grids to find a point onH close to the

(unknown)x.
For each point ofp � R, we construct a gridGp

�
t � of side lengthεt� �10R� � O

�
tε4 log

�
1�ε��

centered atp on H, and letB
�
p�3t � be a ball of radius 2t centered atp. Finally, let S� �p�t � �

Gp
�
t � � B

�
p�3t �. Clearly, if t�2

�
AvgMed

�
P�1� �

t, and ��p� copt ��
�

2t, then there is a point
q � S� �p�t � such that cost

�
q�P� � �

1� ε�medopt
�
P�1�.
7



Let S
�
P�R� � O�logn��

i�0

�
p�R

S� �p�2i �. Clearly,S
�
P�R� is the required point-set, and furthermore,

S�
P�R�  � O

��
logn� R

�
1
ε4 log

1
ε�O� �R���

� O 2O�1�ε3 log2 �1�ε�� logn� � O 2O�1�ε4� logn� �
Theorem 3.5 For any point-set P� � d and0 � ε � 1, a

�
1� ε�-approximate2-median for P can

be found in

O
�
2�1�ε�O�1�dO�1�nlogO�1� n�

expected time, the results are correct with high-probability.

Proof: In the following, we assume that the solution is irreducible, i.e., removing a median
creates a solution with cost at least 1� Ω

�
ε� times the optimal. Otherwise, we can focus on

solving the 1-median instead.
Let c1 �c2 be the optimal centers andP1 �P2 be the optimal clusters. Without loss of generality

we assume thatP1  � P2 . The algorithm proceeds by considering whetherP2 is large or small
when compared with the size ofP1. In both cases the algorithm return an approximate solution
with constant probability. By exploring both cases in parallel and repeating the computation several
times we can achieve arbitrarily large probability of success.
Case 1: P1  � P2  � P1 ε. In this case we sample a random set of pointsR of cardinality
O

�
1�ε4 log1�ε�. We now exhaustively check all possible partitions ofR into R1 � P1

� R and
R2 � P2

� R (there areO
�
2O�1�ε4 log1�ε� � such possibilities). For the right such partition,Ri is a ran-

dom sample of points inPi of cardinalityΩ
�
1�ε3 log1�ε� (sinceE 	 R� Pi 
 � Ω

�
1�ε3 log1�ε�). By

Theorem 3.4, we can generate point-setsS1 �S2 that with constant probability containsc�1 � S1 �c�2 �
S2, such that cost

�
c�1 � c�2 �P� � �

1� ε�medopt
�
P�2�. Checking each such pairc�1 �c�2 takesO

�
nd�

time, and we haveO
� S1 S2 � pairs. Thus the total running time isO nd2O�1�ε4 log1�ε� log2n�.

Case 2: P1 ε 	 P2 . In this case we proceed as follows. First, we sample a setR of λ �
O

�
1�ε3 log1�ε� points fromP1. This can be done just by samplingλ points fromP, since with

probability 2�O�1�ε3 log1�ε� such a sample contains only points fromP1; we can repeat the whole
algorithm several times to obtain constant probability of success. Next, using Theorem 3.4, we
generate a setC1 of candidates to be center points of the clusterP1. In the following, we check all
possible centersc�1 � C1. With constant probability, there existsc�1 � C1 such that cost

�
c�1�P1

� ��
1� ε�3�cost

�
c1�P1

�.
Let

�
P�1�P�2� denote optimal 2-median clustering induced by medianc�1 (as above), and let

c�2 denote the corresponding center ofP�2. We need to findc��2 such that cost
�
c�1 � c��2 �P� � �

1�
ε�3�cost

�
c�1 � c�2 �P� � �

1� ε�medopt
�
P�2�. In order to do that, we first remove some elements from

P1, in order to facilitate random sampling fromP2.
First, observe that cost

�
c�1�P�2� � P�2  	 �c�2 � c�1�� cost

�
c�2 �P�2� and therefore we can focus on

the case whenP�2  	 �c�2 � c�1� is greater thanO
�
ε� 	cost

�
c�1 � c�2 �P�, since otherwisec�2 � c�1 would

be a good enough solution.
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We exhaustively search, for the right values of two parameterst �U, such thatt�2
� �c�1 � c�2� �

t andU�2
�

medopt
�
P�2� �

U. SinceP is normalized this would require checkingO
�
log2n� possi-

ble values fort andU. If t 	 4U, thent 	 4medopt
�
P�2� and for anyp�q � Pi we have�p� q� �

U.
Moreover, for anyp � P1 �q � P2 we have�p� q� � �c�1 � c�2�� �c�1 � p� � �c�1 � q� 	 2U. Thus,
take all the points in distance

�
2U from c�1 to be inP�1, and take all the other points to be inP�2.

The problem is thus solved, as we partitioned the points intothe correct clusters, and can compute
an approximated 1-median for each one of them directly.

Otherwise,t
�

4U and letS� �
p ��� �p� c�1 � �

t�4�. Clearly,S� P�1. Moreover, we claim that

P�2  � ε P�1 
 S, since otherwise we would have

P�2  ��c�2 � c�1 ��
� ε P�1 
S ��c�2 � c�1��

and

cost
�
c�1 �P�1 
S� � t

4
P�1 
S � �c�2 � c�1�

8
P�1 
S�

Thus, P�2  �c�2 � c�1� �
8εcost

�
c�1 �P�1 � S� and thus cost

�
c�1�P� � �

1� 8ε�cost
�
c�1 � c�2 �P�. This im-

plies that we can solve the problem in this case by solving the1-median problem onP, and thus
contradicting our assumption.

Thus, P�2  � ε P�1 
 S. We createP� � P 
 S� P��1 � P�2, whereP��1 � P�1 
 S. AlthoughP��1 might
now be considerably smaller thanP��2 , and as such case 1 does not apply directly, we can overcome
this by adding enough copies ofc�1 into P��1 , so that it would be of similar size toP�2.

To carry that out, we again perform an exhaustive enumeration of the possible cardinality ofP�2
(up to a factor of 2). This would require checkingO

�
logn� possibilities. LetV be the guess for

the cardinality ofP�2, such thatV
� P�2  � 2V .

We addV copies ofc�1 to P��1 . We can now apply the algorithm for the case when the cardinali-
ties of both clusters are comparable, as long as we ensure than the algorithm reportsc�1 as one of the
medians. To this end, it is not difficult to see that by adding copies ofc�1 to P��1 we also ensured that
for any 2 mediansx andy, replacing at least one of them byc�1 yields better solution. Therefore,
without loss of generality we can assume that the algorithm described above, when applied toP�,
reportsc�1 as one of the medians. The complexity of the algorithm is as stated.

Theorem 3.6 For any point-set P� � d , ε � 1, and a parameter k, a
�
1� ε�-approximate k-median

for P can be found in

2�k�ε�O�1�dO�1�nlogO�k� n
expected time, the results are correct with high-probability.

Proof: We describe the extension of the algorithm of Theorem 3.5 fork 	 2. The general ideas
used in the algorithm are as in the casek � 2, but are applied in a recursive fashion.

Let the optimal clusters beC1 � � �Ck, and let their centers bec1 � � �ck. AssumeC1  � � � � � Ck .
We can assume that we knowCi up to any constant factor (by exhaustive enumeration ofO

�
logn�k

possibilities). In the following, for simplicity of exposition we will assume we knowCi ’s exactly.
The algorithm proceeds by performing at mostk reductions. Each reduction reduces the num-

ber of remaining clusters to compute (by finding an approximate cluster center for one of them,
or by observing that one of the clusters is unnecessary to consider) as well as the total number of
points to consider. Moreover, each reduction will induce anincrease in the total clustering cost by
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a factor
�
1� O

�
ε��k�. Thus, the cost of the final clustering will be at most

�
1� O

�
ε�� times larger

than the optimal cost.
The algorithm proceeds by considering the following cases.

Case 1: Ci�1  � εb�kb Ci , for a certain constantb 	 1. In this case we know thatCi  � n �εb�kb�k

for all i � 1 � � �k. Thus, we can solve the problem by samplingkb

εb
�k

kO�1��εO�1� points, then guess-

ing (by enumeration) which points belong to which clusters,and applying the 1-median sampling
theorem for the sample of points of each cluster.

Case 2: Ci�1  � �
εb�kb� Ci , for somei. Assume thati is the smallest index with this property.

Note that∑ j 	 i Cj  � 2εb�kb�1n.
In this case, we choose a random sample of size at mostn�∑ j�i Cj  and not greater than

the one in Case 1. Observe that with constant probability thesample contains only points in
C1 � � � ��Ci , and moreover it contains enough of them so that

�
1� ε�k�-approximate medians for

the firsti clusters can be computed as in Case 1. We will keep thesei medians till the end of the
computation, and compare the cost of our solution to the costof the best clustering with the same
first i medians. We will denote the optimal solution medians (again) by c1 � � �ck, and the induced
clusters byC1 � � �Ck.

Since we knowc1 � � �ci , it remains to find the remaining cluster centers. Let AvgMed�
AvgMed

�
C1 � � � � � Ci � i �. If the distance from anyc j , j 	 i to the nearestc1 � � � � �ci is less than

AvgMed, then we ignore (i.e., not compute) such medianc j . Note that the additional cost incurred
in this way is at most AvgMed	2εn�k, which is at mostO

�
ε�k� times the optimal cost. Thus, we

reduced the number of clusters to at mostk� 1, and we apply the clustering procedure again, this
time for the smaller number of clusters.

Assume now that the distance from allc j , j 	 i to the nearestc1 � � � � �ci is at least AvgMed.
In this case we apply the “shrinking” approach, similar to the argument used in Theorem 3.5, to
show that we can shrinkC1 � � � � �Ci to make their sizes comparable toCi�1. In particular, lett be the
distance betweenci�1 and its closest points inc1 � � �ci . We can estimatet up to any constant factor
by guessing one out ofO

�
logn� approximations. As before, for simplicity, assumet is the exact

distance.
We know that all points within distance� t�2 to c1� � � � �ci belong to clustersC1 � � � � �Ci . There-

fore, we can remove them from the set to cluster. Note that this does not change the medians
c1 � � �ck. However, the number of points with distance	 t�2 from c1 � � � � �ck is comparable to the
size ofCi�1, or otherwiseci�1 is redundant. Specifically, assume that the number of such points
is m. Then the cost of the clustering is at leastmt�2. If we removedci�1, the cost would increase
by at mostt Ci�1 . Thus, ifm 	 2k�ε Ci�1 , then we could reduce the number of clusters by 1 and
proceed recursively. If this is not the case, it means thatm � 2k�ε Ci�1 . At the same time we can
enforce Cj  � Ci�1  for j

�
i by adding copies ofc j (as for the casek � 2). We can now apply

the algorithm recursively to find the remaining medians. Observe that this particular recursive step
can be applied at mostk times, since after the step the minimum value ofi s.t. Ci�1 � Ci  is
increased by 1.

This is yields a recursive algorithm, that gets rid one one cluster in each recursive call. Thus, the

algorithm has the running time stated. Note, that we need to rerun this algorithmO 2O�k� logn�

10



times to get high probability of correctness.

4 k-center clustering with outliers

In this section, we extend our algorithm from Section 2 to handle outliers.

Definition 4.1 For a point-setP in � d , let rcen
�
P�k�α� denote the minimal radius clustering with

outliers; namely, we allow to throw outα P outliers. Computing this value is the
�
k�α�-center

problem. Formally,
rcen

�
P�k�α� � min

S�P� �S�� �1�α� �P�rcen
�
S�k� �

The problem of computingk-center with outliers is interesting, as the standardk-center clus-
tering is very sensitive to outliers.

Theorem 4.2 For any point-set P� � d , parameters1 	 ε �α 	 0�µ 	 0, a random sample R of
O

�
1� �εµ�� points from P spans a flat containing a

�
1� ε �1�µ� α�-approximate solution for the

1-center withα-outliers for P. Namely, there is a point p� span
�
R�, such that the ball of radius�

1� ε�rcen
�
P�1�α� centered at p, contains at least

�
1� α � µ� points of P.

Furthermore, we can compute such a cluster in O
�
f
�
ε �µ�nd� time, where f

�
ε �µ� � expO  1

εµ log2 1
εµ

��
Proof: Let copt denote the center of the optimal solution,ropt � rcen

�
P�1�α� denote its radius,

and Bopt � Ball
�
copt �ropt

�. Let s1 � � � � �si be our random sample,Fi � span
�
s1 � � � � �si

�, andci �
proj

�
copt �Fi

�, and we setβ � �
ε, and

Ui � �
x ���π�2� β � �

coptcix
� π�2� β � �

be the complement of the cone of angleπ � β emanating fromci , and havingcicopt as its axis.
Let Pi � Ui

� P� Bopt. For any pointp � Pi , we have

�p� ci � � �
x2

p � y2
p
�

ropt
�

1� 4β2 � ropt
�
1� O

�
ε�� �

Namely, as far as the points ofPi are concerned,ci is a good enough solution.
Let Qi � P
Pi. As long asQi  � �

α � µ� P, we have a probability of 1�µ to sample a random
point that is inQi and is not an outlier. Arguing as in the proof of Theorem 3.2, in such a case, the
distance of the current flat tocopt shrank down by a factor of

�
1� β2�4�. Thus, as in the proof of

Theorem 3.2, we perform the random sampling in rounds. In ourcase, we needO
��

1�ε� log
�
1�ε��

rounds, and each round requires in expectation 1�µ random samples. Thus, overall, if we sam-
ple M � O

��
1� �εµ�� log

�
1�ε�� points, we know that with constant probability, span

�
s1� � � � �sM

�
contains a point in distanceεropt from copt.

As for the algorithm, we observe that using random sampling,we can approximateropt
�
P�1�α�

up to a factor of two ino
�
dn� time. Once we have this approximation, we can generate a set of

candidates, as done in Theorem 3.4. This would result in

f
�
ε �µ� � O

��
10R

ε � �R� 	 R
� � 2O��1� �εµ�� log2 �1� �εµ���
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candidates. For each candidate we have to spendO
�
nd� time on checking its quality. Overall, we

get f
�
ε �µ�nd running time.

Remark 4.3 Theorem 4.2 demonstrates the robustness of the sampling approach we use. Al-
though we might sample outliers into the sample setR, this does not matter, as in our argumen-
tation we concentrate only on the points that are sampled correctly. Essentially, dist

�
Fi �copt

� is a
monotone decreasing function, and the impact of outliers, is only on the size of the sample we need
to take.

Theorem 4.4 For any point-set P� � d , parameters1 	 ε �α 	 0�µ 	 0�k 	 0, one can compute a�
k�α � µ�-center clustering with radius smaller than

�
1� ε�rcen

�
P�k�α� in 2�k�εµ�O�1�nd time. The

result is correct with constant probability.

Proof: Let P� be the set of points ofP covered by the optimalk-center clusteringC1 � � � � �Ck,
with αn outliers. Clearly, if any of theCis contain less than

�
µ�k�n points ofP�, we can just skip it

altogether.
To apply Theorem 4.2, we need to sampleO

�
k� �εµ�� points from each of those clusters (we

apply it with µ�k for the allowed fraction of outliers). Each such cluster, has size at least
�
µ�k�n,

which implies that a sample of sizeO
�
k2� �µ2ε�� would contain enough points fromCi . To im-

prove the probabilities, we would sampleO
�
k3� �µ2ε�� points. LetR be this random sample. With

constant probability (by the Markov inequality),R�Ci � Ω
�
k� �εµ��, for i � 1� � � � �k. We exhaus-

tively enumerate for each point ofR to which cluster it belongs. For such partition we apply the
algorithm of Theorem 4.2. The overall running time is 2O��k� �εµ�O�1� ��nd.

5 The1-cylinder problem

Let P be a set ofn points in� d , we are interested in finding a line which minimizes the maximum
distance from the line to the points. More specifically, we are interesting in finding a

�
1 � ε�

approximation to the problem in polynomial time.
In the following, let�opt denote the axis-line of the optimal cylinder,ropt � radius

�
P��opt

� �
maxp�P ���opt � p�� denote its radius, andHopt denote the hyperplane perpendicular to�opt that
passes through the origin.

In this section, we prove the following theorem:

Theorem 5.1 Given a set of n points in� d , and a parameterε 	 0, one can compute, in nO�log�1�ε��ε2�
a line l, such thatradius

�
P� l � � �

1� ε�ropt, where ropt is the radius of the minimal1-cylinder that
contains P.

5.1 The Algorithm

First, observe that one can compute a 2-approximation to the1-cylinder problem by finding the
furthest away 2 pointsp�q � P (i.e., the diameter) and taking the minimum cylinder havingpq as
its axis that containsP. It is easy to verify that the radiusR of this cylinder is at most 2ropt, where
ropt is the radius of the smallest cylinder. ComputingR takesO

�
n2d� time.
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Let l be the center line of an optimal solution with costropt. We will assume that the value
of ropt is known to us (up to a factor very close to 1), as we can enumerate all potential values of
ropt in the rangeR�2 � � �R. The high-level idea of the algorithm is to compute a

�
1� ε� distortion

embedding of then points from� d into � log n�ε2
, “guess” the solution to the problem there and

then to retrieve the solution in the original space. However, a simple application of this method
is known to not work forcontinuousclustering problems (and 1-cylinder in particular), due tothe
following problems:

� The optimal solution found in the low-dimensional space does not have to correspond to any
solution in the original space.

� Even if this was true, it is not clear how to retrieve the high-dimensional solution from the
low-dimensional one.

To overcome this difficulties, we proceed as follows:

1. In the first step, we find a pointh lying on the�opt. To be more precise, we “guess” it (by
enumerating polynomially many candidates) instead of finding it; moreover, the point does
not lie on the line by only sufficiently close to it.

2. We remove fromP all the points within distance
�
1� ε�ropt from h. Since our final solution

line passes throughh, it is sufficient to find a solution for the smaller setP.

3. We embed the whole space into a low-dimensional space, such that with high probability for
all pointsp � P, the angles

���
ph�opt are approximately preserved.

As we discuss later, such an embeddingA is guaranteed by Johnson-Lindenstrauss lemma.

4. We guess (approximately) the low-dimensional imageAl of the linel (again, by exploring
polynomially many possibilities). By the properties of theembeddingA, we can detect which
points inP lie on the positive side of the

�
d � 1�-dimensional hyperplaneH passing through

h and orthogonal tol . We modify the setP by replacing each pointp from the negative side
of the hyperplane by its reflection aroundh. Note that this operation does not increase the
solution cost by too much.

5. It is now sufficient to find an optimal half-infiniteray beginning at pointh, to minimize the
distance fromP to the ray. Moreover, we know that the points are on the same side of a�
d � 1�-dimensional hyperplane that passes throughh. This problem can be solved using

convex programming tools.

Thus, we use the low-dimensional image ofl to discover the “structure” of the optimal solution,
namely which points lie on which side of the hyperplaneH. Knowing this fact allows us to reduce
our (non-convex) problem to a convex one.

5.2 Detailed description of computing the approximate1-cylinder

In the following, we elaborate on each step in computing the min-radius cylinder containing a
point-set.
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5.2.1 Step 1: finding a point near the line

In order to find the pointh, we will need to embed additional “helper” points. For each subsetSof
P, M � S� O

�
1�ε2�, we compute anε-net on the interior of the convex body spanned by them.

Definition 5.2 Let U be any set of points in� d , andε 	 0 be a parameter. We say that a subset
V of points is anε-net for U if for any line � that intersectsCH

�
U �, there is av � V such that

dist
�
v�� � � ε

2ropt.

Lemma 5.3 Let U be a set of points in� d and ε 	 0 be a parameter. We can compute anε-net
A
�
U � for U in

� U 2�5�ε�O� �U �� time. The cardinality of A
�
U � is

� U 2�5�ε�O� �U ��.
Proof: Let H the

�
M � 1�-dimensional affine subspace spanned byU (notice thatM

� U ),
and letE

�
H be an ellipsoid such thatE � �M � 1�2 �

CH
�
U � �

E , whereE � �M � 1�2 is the
scaling down ofE around its center by a factor of 1� �M � 1�2. Such an ellipsoid exists (a stronger
version of this statement is known as John theorem), and can be computed in polynomial time
in U  [GLS88, Section 4.6]. LetB be the minimum bounding box ofE which is parallel to the
main axises ofE . We claim, thatB��M is contained insideE . Indeed, there exists a linear
transformationT that mapsE to a unit ballS . The pointq � �

1��M �1��M � � � � �1��M� lies on
the boundary of this sphere. Clear,T �1�q� is a corner ofB��M, and is on the boundary ofE . In
particular,

∆
�
B � � �

M∆
�
B��M� � �

M∆
�
E �

� �
M

�
M � 1�2∆

�
E � �M � 1�2� � �

M
�
M � 1�2∆

�
U � �

For any line�, the same arguments works for the projection of those entities in the hyperplane
perpendicular to�. Let T P � denote this projection, we have:

∆
�
T P �

�
B �� � �

M
�
M � 1�2∆

�
T P �

�
U ��

�
2
�

M
�
M � 1�2dist

�
U �� � �

Next, we partitionB into a grid, where each grid cell is a translated copy ofBε � �
ε�2�B� �2�M

�
M �

1�2�. This grid hasV � �
M2�5�ε�O�M� vertices, and letA

�
U � denote this set of vertices.

Let � be any flat intersectingCH
�
U �. We claim that one of the points inA

�
U � is in distance� ε

2 dist
�
U �� � from �. Indeed, letz be any point inCH

�
U � � �. Let B ��ε be the grid cell containing

z, and letv be one of its vertices. Clearly,

dist
�
v�� � � �T P �

�
v�T P �

�
z� � � ∆

�
T P �

�
B ��ε ��

� ε
2

	 1

2
�

M
�
M � 1�2∆

�
T P �

�
B �� � ε

2
dist

�
U �� � �

which establishes our claim.
Let G

�
S� � A

�
S� as defined by Lemma 5.3. Clearly,G�

S�  � � S2�5�ε�O� �S��, where S �
O

�
1�ε2�. We have

G�
S� � 2O�log�1�ε��ε2� �
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Figure 3: Any point inside the convex body has at least 1 “helper” point at distance at mostε�2ropt

after the embedding.

Lemma 5.4 Consider the points in G
�
S� for all sets S. At least one of those points is at mostεropt

away from�opt.

Proof: Project all the points into a hyperplaneHopt, and denote this set of points byP�. Let o
be the point corresponding to the line intersected withHopt. Since all the points are at distance at
mostropt from l , all the points projected intoH will be at distance at mostropt from o. Compute
the minimum enclosing ball of the point-setP�. It is easy to see that if the origin of the minimum
enclosing ball is noto, then we can come up with a solution for the minimum fitting line of cost
lower thanropt by just translatingl to intersect the center of the ball. Therefore, it must be that
the minimum enclosing ball ofP� has the origin ino. By Theorem 2.5, there exists a setS� P�,
S � O

�
1�ε2�, such that the minimum enclosing ball of theS is at most

�
ε�2�ropt away fromo

and since the center of any minimum enclosing ball of a set of points can be written as a convex
combination of the points, we conclude that there exists a point p, a convex combination of the
points ofSsuch thatD

�
p�o� � εropt. Also, distance fromp to the closest point ofG

�
S� is at most�

ε�2�ropt.
Therefore, there exists a point in ourε-net that is at mostεropt away from the optimal fitting

line.

5.2.2 Step 2: Removing the points nearh

For the simplicity of the exposition, we assume, from this point on, thath lieson the optimal line�opt. We remove fromP all the points within distance
�
1� ε�ropt from h.

The removal step can be clearly implemented in linear time. Observe that after this step, for
all pointsp, the angle between

��
ph and�opt is in the range	0�π�2� ε�2


 � 	π�2� ε�2�π

for small

enoughε. As we will see in the next section, this property implies that the angles do not change
the value from less thanπ�2 to greater thanπ�2 after applying the dimensionality reduction.
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5.2.3 Step 3: Random projection

In this section we show how to find a mappingA : � d � � d� for d� � O
�
logn�ε2� which pre-

serves all angles
���

hp�opt, p � P, up to an additive factor ofε�3. For this purpose we use the
Johnson-Lindenstrauss lemma. It is not difficult to verify (e.g., see [EIO02]) that if we set the error
parameter of the JL lemma toε�C for large enough constantC, then all the aforementioned angles
are preserved up to an additive factor of, say,ε�4. This implies that for eachp � P, the image of the
point p is on the same side of the (image of) the hyperplaneH as the original pointsp. Moreover,
for any p � P the angle

� ���
hp��opt

� are in the range	0�π�2� ε�4

 � 	π�2� ε�4�π


, i.e., are still
strictly separated fromπ�2.

5.2.4 Step 4: Guessing the image ofl

We now need to guess (approximately) the imageA�opt, whereA is the mapping generated by
the JL lemma. For this purpose, we need to know the direction of l , since we already know one
point through which the lineA�opt passes through. Our approach is to enumerate all “different”
directions of a lineA�opt. Obviously, the number of such directions is infinite. However, since we
use the lineexclusivelyfor the purpose of separating the pointsp � P depending on their angle���

hp�opt, and those angles are separated fromπ�2 by ε�4, it is sufficient to find a direction vector
which is within angular distanceε�4 from the direction ofl . Thus, it is sufficient to enumerate all
directions from anε�4-net for the space of all directions. It is known that such spaces of cardinality�
1�ε�O�d� � � nO�log�1�ε��ε2� exist and are constructible. Thus, we can find the right partition of points

in P by enumerating a polynomial number of directions.
After finding the right partition ofP (say, intoPL and PR), we replace each point inPL by

its reflection throughh; call the resulting setP�L � �
2h� p ���p � P�. Note that there is a one-to-

one correspondence between the 1-cylinder solutions forP which pass throughh and the 1-ray
solutions forP� � P�L � PR; the 1-ray problem is defined as to find a rayr with an endpoint at
h which minimizes the maximum, over all input pointsp, of the distance fromp to r. Thus, it
remains to solve the 1-ray problem forP�.
5.2.5 Step 5: Solving the1-ray problem using convex programming

We focus on the decision version of this problem. Assume we want to check if there is a solution
with cost at mostT. For each pointp, define a coneCp to be the set of all rays with endpoints inh
which are within distanceT from p. Clearly,Cp is convex. The problem now corresponds to check-
ing if an intersection of all conesCp is nonempty, which is an instance of convex programming and
thus can be solved up to arbitrary precision in polynomial time [GLS88].

6 Conclusions

In this paper, we presented several very fast algorithms fordoing
�
1� ε�-approximate clustering.

Our algorithm relied on the ability to compute small core-sets for those clustering problems. We
believe that the techniques presented in this paper might beuseful for other clustering problems.
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In particular, it would be interesting to extend the set of problems for which we know the existence
and construction of a small core-set.
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