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Abstract

In this paper, we show that for several clustering problems @an extract a small set of
points, so that using thosmre-setsenable us to perform approximate clustering efficiently.
The surprising property of those core-sets is that the& isizndependent of the dimension.

Using those, we present(d+ €)-approximation algorithms for thecenter clustering and
k-median clustering problems in Euclidean space. The rigninime of the new algorithms has
linear or near linear dependency on the number of points lemdimension, and exponential
dependency on/k andk. As such, our results are a substantial improvement ovet wasa
previously known.

We also present some other clustering results including €)-approximate 1-cylinder
clustering, and-center clustering with outliers.

1 Introduction

Clustering is one of the central problems in computer-s@eilit is related to unsupervised learn-
ing, classification, databases, spatial range-searctiatg;mining, etc. As such, it received a lot
of attention in computer-science in the last twenty yeatseré is a large literature on this topic
with numerous variants, see [DHS01, BE97].

In this paper, we present several results on clustering eft afspointsP in RY, where the
dimensiond is large. All our results rely on a new technique that exteasimall subset of points
that “represents” this point-setwell as far as specific clustering problems are concerndte T
surprising property of those sets is that their sizemikependenbf the dimension. The existence
of such core-sets for various approximation problems wasvkrbefore, but their size depended
polynomially or exponentially on the dimension [MOPO01, AR®O, Har01, HVO1, ITOO].

Using this new technique, we present the following resulthis paper:
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e In Section 2, we show that one can extract a core-set ofG{1¢e?), so that the minimum
enclosing ball of the sample is df + €)-approximation to the minimum enclosing ball of
a set of point®® ¢ RY. Using this core-set, we present &#/°9K/€%) . dn time algorithm
that computes afil + €)-approximatek-center clustering oP, i.e., finds a set ok points in
RY such that the maximum distance of pointsino their closest center is minimized. No
algorithm for this problem has been previously known, altto (as pointed out in [Ind01])
by using the techniques of [OR00] one could achieve a muateslalgorithm with running
time n®k*/£%) . For lower dimension, Agarwal and Procopiuc [AP98] showe&{(alogk) +

(k/€)°@K) time algorithm for this problem.

Fork = 1, the core-set technique yields an algorithm with runnimgO (d n/e2 + (1/8)0(1)) :

This significantly improves previously known bounds (obé&al via ellipsoid algorithm) of
O(d3nlog(1/¢)) [GLS88].

e In Section 3, we show that by using random sampling, one cdraﬁm(l/so(l))-size set of
pointsR, such that the flat spanned by those points contains a paiotse to the 1-median
of the point-set. The only previous result of this type [IT08ed a sample of size linearly
dependent on the dimension. Using the sampling technigei@resent a

2(k/8)o(1)do(1) n|ogo(k) n

expected time algorithm that computeda- €)-approximation to the optim&tmedian forP

(i.e., findsk points-medians ilRY, such that the sum of the distances from all pofhts their

closest medians is minimized). Previously, the fasteswknalgorithm with polynomial
dependence od was due to Ostrovsky and Rabani [OR00] and it ram(tt/9°? time.

For relevant results, see [ARR98].

e In Section 5, we present i + €)-approximation algorithm for the problem of comput-
ing the minimum radius cylinder that covePs The running time of the new algorithm is
nC(log(1/8)/e%) _ The fastest algorithm previously known run@fn+ 1/e°(®) time [HVO01],
which is exponential in the dimension. The algorithm conekithe use of a core-set for 1-
center, dimensionality reduction (to reduce the searcbespa a manner similar to [ORO0O])
and convex programming.

e Section 4 we present an efficient algorithm for solvikkagenter problem witloutliers.

Concluding remarks are given in Section 6.

2 k-center clustering
In this section, we present an efficient approximation atgor for thek-center problem.

Definition 2.1 For a point-seP in RY, let recen(P, k) denote the radius of tHecenter clustering of
P. Here one wishes to find thecenters (i.e., points), so that the maximum distance of atpoia
center is minimized. This distance the radius of the clusger



Figure 1: If the two centers . 1,¢; are far, then the radius of the min-enclosing ball must grow.

We start from restating the following lemma, proved oridgiynan [GIVO1]. For completeness,
we give the proof here.

Lemma 2.2 Let B= Ball(cg,r) be a minimum enclosing ball of a point-set?PRY, then any
closed half-space that contains the center of B, must alatagoat least a point from P that is at
distance r from the center of B.

Proof: Suppose there exists a closed half-sgadkat contains the center Bfand does not contain
any point ofP of distancer from the centerg. SinceH is closed, there exist an> 0 such that
the minimum distance between the point$0fH andH is > €. Also, fix € such that the distance
between any of the points B(H andcg is at mostr — €. This means we can translate the ball
B in the direction perpendicular td by €/2. After we translat®, none of the points dP will lie
exactly on the boundary of the translated ball, which meamsan shrink the ball radius ®yand
we have found a smaller ball that contains our point-set. Atrealiction. [ |
Now we proceed with the core-set result.

Lemma 2.3 There exist a subset of pointsTSP, |§ = O(1/¢?), such that the radius of the mini-
mum enclosing ball of S is at leabt(1+ €) the minimum enclosing ball of P.

Proof: Start with an arbitrary point € P and lety be the furthest point if? away fromx.
Clearly,||[x—y|| > A/2, whereA denotes the diameter &

SetS = {x,y}. In the following, we maintain a s& of points and their minimum enclosing
ball B; = Ball(ci,ri) of S, wherec;,r; denotes the center and radiusByf respectively. Clearly,
ro>A/4.

There are two possibilities:

e If there is no pointp € P, such thai|p—cj|| > (1+ ¢)r;, then we are done, as the current
enclosing balB; is a(1+ €)-approximation.

e There exist a poinp € P, such that|p—ci|| > (14 &)r;
In this case we se&§.1 = SU{p}.



2
. €
Claim2.4 ri; 1> <1+ 1_6) ri.

Proof: If ||ci — ci+1]| < (g/2)r, then by the triangle inequality, we have

lp—cCisall > llp—cil|=llci—Ciyal| > (1+€)ri - gri = (1-1—%) ri.
Otherwise, if||ci — ¢i+1]| > (¢/2)r; then letH be the(d — 1)-dimensional
hyperplane that passes througland is orthogonal tg;ci; 1. LetH™ be
the open half-space havirmginside it. See Figure 1.
Using Lemma 2.2 we know that there exist a poiat distance; from c;
that is not inH ™. Therefore

2, €, g
Fit1 > ||y —X|| >4/ 1 +1 > (1-1— 1_6> ri,

asO<e< 1. ]

Sincerp > A/4, and at each step we increase the radius of our solution lepst{A/4)e? /16 =
A82/64, it follows that we cannot encounter this case more tham26ﬂmes, asA is an upper
bound of the radius of the minimum enclosing balRof ]

Theorem 2.5 For any point-set R- RY and1 > € > 0, there is a subset 8 P, |§ = O(1/¢?),
such that if o is thd-center for S, then o is @l + €)-approximatel-center for P. The set S can be
found in time @dn/e? + (1/€)%log(1/¢)).

Proof: The algorithm follows the proof of Lemma 2.3. This requiresnputingM = O(1/¢?)
times (1 + €)-approximate enclosing ball of at mdst= O(1/€?) points inD = O(1/¢?) dimen-
sions. This can be done M(MD3Nlog(1/¢)) = O(1/¢'%log(1/¢)) time, using convex program-
ming techniques [GLS88]. This also requires scanning thetgbl times, which take©(nd/&?)
time overall. |

Theorem 2.6 For any point-set R- R4 and1 > € > 0, a (14 £)-approximate2-center for P can
be found in2%1/£*)dn time.

Proof: We start from two empty sets of poing&,S. At each stage leB1, B, denote the
smallest enclosing ball fos; andS,. In thei-th iteration, we pick the poinp; furthest away
from B1 andB,. To decide whether to pyg in $ or in S, we read a bit from a guessing oracle.
Clearly, by Theorem 2.5, aft€(1/¢?) iterations we would be done, assuming our guessing oracle,
classifged the required points correctly. Thus, the runninge of this algorithm isO(dn/g? +
(1/e)).

To remove the guessing oracle, we exhaustively enumerapesdible guesses. This would
require running this algorithm®/¢”) times, once for each guess sequence. Overall, resulting in
dn2°(1/¢%) running time. n

Theorem 2.7 For any point-set R RY and1>¢> 0, a (1+ ¢)-approximate k-center for P can
be found in20((klogk)/€%) g time.



Proof: Follows by a straightforward extension of the algorithm dfedrem 2.6, where each
guess now is a number between 1 &nend we have to genera@¥k/e?) guesses. m

3 k-median clustering
In this section, we present an efficient approximation atgor for thek-median problem.

Definition 3.1 For a setX and a pointy in RY, let dis{(X, p) = minyex ||[x— p||. For a sefP of n
points inRY, let
medy(P,k) = min dist(K,
G(P=, min 5 dst.p

denote the optimal price of tHemedian problem. Let
AvgMed(P, k) = medyi(P, k) /|P|

denote the average radius of thenedian clustering.
For any set#\, B C P, we use the notation

cos{A,B) = Z) lla—b]|.
acAbeB

If A= {a}, we write costa, -) instead of cogi{a}, -); similarly for b. Moreover, we define costv
%,A) = Yacamin(|la—x| ,[la-yl).

For a set of pointX C RY, let spariX) denote the affine subspace spanned by the poirXs of
We refer to spafX) as theflat spanned by.

Theorem 3.2 Let P be a point-setiR?, 1> £ > 0, and let X be arandom sample of D'e3log 1/¢)
points from P. Then with constant probability, the follogitwo events happen: (i) The flat
spar{X) contains a(1+ €)-approximatel-median for P, and (ii) X contains a point in distance
< 2AvgMed P, 1) from the center of the optimal solution.

Proof: Let medyt = medp(P, 1) be the price of the optimal 1-mediaR,= AvgMed(P, 1),

B =¢/16, andsy,...,s, be our random sample. In the following, we are going to partithe
random sample into rounds: A round continues till we samppmiat that has some required
property. The first round continues till we encounter a pginsuch that|s — copt|| < 2R, where
Copt is the center of the optimal 1-median. By the Markov ineqyafor any samples we have
|s — Copt|| < 2R, with probability> 1/2, asE[||s — copt||] = R.

Let's assume thas is a sample that just terminated a round, and we start a ne\plsam
round, andF is the flat spanned by the firstpoints in our sampless,...,s. Observe that if
dist(F, copt) < €R, then we are done, as the point gogjy, F) is the required approximation,
where profCopt, Fi) denote the projection @b into F.

Note, that the distance fromap; to F is monotone decreasing. Thatis 1 = dist(Fi1, Copt) <
di = dist(F,copt). We would next argue that either after taking enough sampilet® d; is small
enough so that we can stop, or otherwise almost all the pofriedie very close to our spanned
subspace, and we can use it to find our solution.
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Figure 2: A round terminates as soon as we pick a point out$ide

Indeed, lett; = proj(Copt, F), and let
Ui = {x‘xe RY s.t. T/2—B < ZCoptGiXx < T[/2—|-B},

be the complement of the cone of angle 3 emanating front;, and havingicopt as its axis. See
Figure 2. Let#; be the(d — 1)-dimensional hyperplane passing througland perpendicular to
CiCopt. FoOr a pointp € P, letx, be the distance ab to the line; passing througl,: andc;j, and
letyp be the distance betwegrand #4.
If p€ Ui, then
B

sin EXp €
Yp < XptanB < xp—— <4Bxp < — <

P <4< 5 <2 o= o,

asf < 1/16. In particular,

IP—cCill < Xp+Yp < (1+€/4)||p—Copt|-

Namely, if we move our center fromy to ¢j, the error generated by points insideis smaller
than medye/4.
Thus, if the number of points iQ; = P\ U; is smaller thame/4, then we are done, as the
maximum error encountered for a point@fwhen moving the center fromyp; to ¢j is at most R.
Thus, it must be thatQ;| > ne/4. We now perform a round of random sampling till we pick a
point that is inQ;. Lets;j € Q; be this sample point, where> i. Clearly, the lind connecting;
to s; must belong td~j, asci € K C Fj. Now, the angle betwednand/; = line(ci, Copt) is smaller
thantt/2 — 3. Namely,

dist(Fj, Copt) dist(l, Copt) < ||Copt— Gi|| SIN(T/2—B) = ||Copt — Ci|| cogB)

(1-PB?/4) Hcopt —Gi H
(1- 82/4) dist(F, Copt)-

Thus, after each round, the distance betwgemdc,: shrinks by a factor of1 — [32/4). Namely,
either we are close to the optimal center, or alternatively,make reasonable progress in each
round.

In the first round, we picked a pois§ such that|s, — Copt|| < 2R. Either during our sampling,
we had distF, copt) < €R, or alternatively, we had reduced in each round the disthateeen our
sample flat and,p: by a factor of(1— 32/4). On the other hand, once this distance drops below

<
<

I
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€R, we stop, as we had found a point that belonds tand provide g1+ €)-approximate solution.
Furthermore, as long d®;| > en/4, the probability of success is at leagéh. Thus, the expected
number of samples in a round till we pick a point@f (and thus terminating thieth round) is
[4/€]. The number of rounds we need is

Let X be the random variable which is the number of random samifilgettM successes. Clearly,
E[X] = O(1/€3log /). It follows, by the Markov inequality, that with constantopability, if
we sampleO(1/€3log(1/<)) points, then those points span a subspace that contgihs-a)-
approximate 1-median center. [ |

We are next interested in solving tlkemedian problem for a set of points Rf. We first
normalize the point-set.

Lemma 3.3 Given a point-set P ifRY, and a parameters,k, one can can scale-up space and
compute a point-set’Psuch that: (i) The distance between any two points’iisRat least one.
(i) The optimal k-median cost of the modified data set is astmdfor b = O(1), where n= |P|.
(iif) The costs of any k-median solutions in both (old and rfved) data sets are the same up to a
factor of (1+¢/5). This can be done in @kd) time.

Proof: Observe that by using Gonzalez [Gon85] 2-approximatioorélym to thek-center
clustering, we can compute i@(nkd) time a valueL (the radius of the approximatecenter
clustering), such thdt/2 < med(P, k) < nL.

We cover space by a grid of size/(5nd), and snap the points &fto this grid. After scaling,
this is the required point-set. |

From this point on, we assume that the given point-set is abzed.

Theorem 3.4 Let P be a normalized set of n pointskfl, 1> € > 0, and let R be a random sample
of O(1/€%log1/¢) points from P. Then one can compute, ir((@o(l/54) Iogn) time, a point-set

S(P,R) of cardinality 0(20(1/84) log n) , such that with constant probability (over the choice of R),
there is a point ¢ S(P, R) such that cos, P) < (14 €)medpt(P, 1).

Proof: Let's assume that we had found auch that/2 < AvgMed(P, 1) <t. Clearly, we can
find such a by checking all possible values b= 2, fori = 0,...,0(logn), asP is a normalized
point-set (see Lemma 3.3).

Next, by Theorem 3.2, we know that with constant probabilibhere is a point oR with
distance< 2 AvgMedP, 1) < 2t from the optimal 1-median centepp of P. Let H = spar{R)
denote the affine subspace spanneby

Note, that by Theorem 3.2, with constant probability, thé Hacontains a poink such that
costx,P) < (1+¢/4)medyp(P, 1). We next use exponential grids to find a pointtdrclose to the
(unknown)x.

For each point op € R, we construct a griép(t) of side lengtret/(10R|) = O(te*log(1/¢))
centered ap on H, and letB(p,3t) be a ball of radius 2centered ap. Finally, letS(p,t) =
Gp(t) N B(p,3t). Clearly, ift/2 < AvgMed(P,1) <t, and || p—Copt|| < 2t, then there is a point
g€ S(p,t) such that cogt, P) < (1+¢&)medyp(P, 1).

7



O(logn) .
LetS(P,R) = U U S(p,2'). Clearly,S(P,R) is the required point-set, and furthermore,
i=0 peR

O(|R))
S(PR)| = o<<logn>|R\ (ilogl) )

g4 Ve
- 0 (20(1/83|092(1/g)) log n) -0 (20(1/84) log n) -

Theorem 3.5 For any point-set R-R% and0O<e< 1, a (1+ ¢)-approximate2-median for P can
be found in

021/ (W njogPD )
expected time, the results are correct with high-probapili

Proof: In the following, we assume that the solution is irreducible., removing a median
creates a solution with cost at leas#-X)(¢€) times the optimal. Otherwise, we can focus on
solving the 1-median instead.

Let c1,C be the optimal centers ari®l, P, be the optimal clusters. Without loss of generality
we assume thgP;| > |P,|. The algorithm proceeds by considering whetRgis large or small
when compared with the size 8. In both cases the algorithm return an approximate solution
with constant probability. By exploring both cases in piatand repeating the computation several
times we can achieve arbitrarily large probability of siesce
Case 1: |Pi| > |P;| > |Pi|e. In this case we sample a random set of poRtsef cardinality
O(1/¢*log1/g). We now exhaustively check all possible partitionsPointo R; = PN R and
R, = PN R (there areD(20(1/£°091/8)y sych possibilities). For the right such partitid® s a ran-
dom sample of points iR of cardinalityQ(1/e3log 1/¢) (sinceE[|[RNP|] = Q(1/e3log 1/¢)). By
Theorem 3.4, we can generate point-&t$, that with constant probability contaig € S;, ¢, €
S, such that cogt) v ¢, P) < (14 €)medhn(P,2). Checking each such paif, ¢, takesO(nd)

time, and we have®(|S;||S;|) pairs. Thus the total running time@(nd20(1/54'°91/€) log? n).

Case 2: |Pi|e > |P»|. In this case we proceed as follows. First, we sample aRset A =
0O(1/€3log1/¢) points fromPy. This can be done just by samplingpoints fromP, since with
probability 2-0(1/€*lo93/¢) such a sample contains only points frd* we can repeat the whole
algorithm several times to obtain constant probability wéess. Next, using Theorem 3.4, we
generate a sef; of candidates to be center points of the clusterin the following, we check all
possible centers; € (1. With constant probability, there exist$ € (1 such that cogty, Pr) <
(1+¢/3)cos(cy, Pr).

Let (P,P;) denote optimal 2-median clustering induced by mediarfas above), and let
¢, denote the corresponding centerRjf We need to finct) such that cogt) v ¢;,P) < (1+
g/3)cos(c] Ve, P) < (1+¢&)medy(P, 2). In order to do that, we first remove some elements from
Py, in order to facilitate random sampling froRa.

First, observe that cog;,Py) < |P}| - ||c, — ;|| 4 cos{c), P;) and therefore we can focus on
the case whefP}| - ||c;, — ;|| is greater tha®(g) - cos{c] V ¢, P), since otherwise, = ¢; would
be a good enough solution.



We exhaustively search, for the right values of two paramsétél, such that/2 < ||cz’1 -l <
tandU/2 < medypt(P,2) < U. SinceP is normalized this would require checki@flog~n) possi-
ble values fot and . If t > 4, thent > 4megp(P, 2) and for anyp, q € B, we havel|p—q|| < U.
Moreover, for anyp € Pi,q € P> we havel|p—q]| > ||c; — ¢,|| —||c, — pl| — ||c}, — all > 2U. Thus,
take all the points in distance 2U from ¢} to be inP;, and take all the other points to be ).
The problem is thus solved, as we partitioned the pointsth#aorrect clusters, and can compute
an approximated 1-median for each one of them directly.

Otherwiset < 4 and letS= {p ‘ Ip—cy] < t/4}. Clearly,Sc P;. Moreover, we claim that
IPy| > €|P;\ S, since otherwise we would have

Pl [z —cif| <elPr\S |-

and

cost;, P\ 9 > L P\ 5> 12l pr g
Thus,|Py| ||c, — ¢ || < 8ecos(c),P; — S) and thus cogt), P) < (14 8¢)cos(c] Vv c,,P). This im-
plies that we can solve the problem in this case by solvindltheedian problem o, and thus
contradicting our assumption.

Thus,|P5| > €|P;\ S|. We create® = P\ S= P UP}, whereP/ = P;\ S. AlthoughP;’ might
now be considerably smaller th&j, and as such case 1 does not apply directly, we can overcome
this by adding enough copies df into P, so that it would be of similar size 1.

To carry that out, we again perform an exhaustive enumerafithe possible cardinality %
(up to a factor of 2). This would require checki@glogn) possibilities. Let?’ be the guess for
the cardinality of®;, such thatl’ < |P;| < 27/.

We add?’ copies ofc) to P;'. We can now apply the algorithm for the case when the caiidinal
ties of both clusters are comparable, as long as we ensuréthalgorithm reports; as one of the
medians. To this end, it is not difficult to see that by addiogies ofc to P;’ we also ensured that
for any 2 medians andy, replacing at least one of them by yields better solution. Therefore,
without loss of generality we can assume that the algoritestdbed above, when appliedRg
reportsc] as one of the medians. The complexity of the algorithm is @tedt ]

Theorem 3.6 For any point-set R~ RY, £ < 1, and a parameter k, &1+ ¢)-approximate k-median
for P can be found in
2(k/5)o(l)do(1) n|ogo(k) n

expected time, the results are correct with high-probapili

Proof: We describe the extension of the algorithm of Theorem 3.k fo2. The general ideas
used in the algorithm are as in the c&se 2, but are applied in a recursive fashion.

Let the optimal clusters b@; ...Cy, and let their centers b® ... c.. AssumeCy| > ... > |Cyl.
We can assume that we knd@| up to any constant factor (by exhaustive enumeratidd(tdgn)X
possibilities). In the following, for simplicity of expa#dn we will assume we knoyC;|'s exactly

The algorithm proceeds by performing at mkseductions Each reduction reduces the num-
ber of remaining clusters to compute (by finding an approxentduster center for one of them,
or by observing that one of the clusters is unnecessary teider) as well as the total number of
points to consider. Moreover, each reduction will induceérmnease in the total clustering cost by
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afactor(1+ O(¢g)/k). Thus, the cost of the final clustering will be at mést- O(g)) times larger
than the optimal cost.
The algorithm proceeds by considering the following cases.

Case 1:|Ci; 1| > €°/KkP|C|, for a certain constat> 1. In this case we know thiE;| > n (sb/kb)k

k
foralli=1...k. Thus, we can solve the problem by sampl(rg) KO /0 points, then guess-

ing (by enumeration) which points belong to which clustarg] applying the 1-median sampling
theorem for the sample of points of each cluster.

Case 2:|Ci;1| < (€2/kP)|Ci|, for somei. Assume that is the smallest index with this property.
Note thaty ; > i|Cj| < 2¢°/k>~In.

In this case, we choose a random sample of size at mst.; |C;j| and not greater than
the one in Case 1. Observe that with constant probabilitysmaple contains only points in
C1U...UG;, and moreover it contains enough of them so that €/k)-approximate medians for
the firsti clusters can be computed as in Case 1. We will keep thesslians till the end of the
computation, and compare the cost of our solution to theafa$ie best clustering with the same
firsti medians. We will denote the optimal solution medians (adayrc; ... ck, and the induced
clusters byC; ... Cy.

Since we knowcs...cj, it remains to find the remaining cluster centers. Let AvgMed
AvgMed(CyU...UG;,i). If the distance from ang;, j > i to the nearesty, ..., is less than
AvgMed, then we ignore (i.e., not compute) such mediarNote that the additional cost incurred
in this way is at most AvgMeden/k, which is at mosO(g/k) times the optimal cost. Thus, we
reduced the number of clusters to at most1, and we apply the clustering procedure again, this
time for the smaller number of clusters.

Assume now that the distance from ajl j > i to the nearesty,...,¢ is at least AvgMed.
In this case we apply the “shrinking” approach, similar te #trgument used in Theorem 3.5, to
show that we can shrir®y, .. .,C; to make their sizes comparableGqa 1. In particular, let be the
distance betweeq 1 and its closest points ity . . . ¢;. We can estimateup to any constant factor
by guessing one out dd(logn) approximations. As before, for simplicity, assuinie the exact
distance.

We know that all points within distancet/2 toc;,..., ¢ belong to cluster€s,...,C;. There-
fore, we can remove them from the set to cluster. Note thatdbes not change the medians
C1...Ck. However, the number of points with distanse /2 from ¢, ..., ¢k is comparable to the
size ofCi 1, or otherwisec; 1 is redundant. Specifically, assume that the number of suichigpo
is m. Then the cost of the clustering is at lead/2. If we removed:;; 1, the cost would increase
by at most|Ci;1|. Thus, ifm> 2k/€|Ci;1/, then we could reduce the number of clusters by 1 and
proceed recursively. If this is not the case, it meansihat2k/e|Ci;1|. At the same time we can
enforce|Cj| > |Ci;4| for j <i by adding copies of; (as for the cas& = 2). We can now apply
the algorithm recursively to find the remaining medians. € that this particular recursive step
can be applied at mogttimes, since after the step the minimum value sft. |Ci1| < |G is
increased by 1.

This is yields a recursive algorithm, that gets rid one onstelr in each recursive call. Thus, the

algorithm has the running time stated. Note, that we needrtmrthis algorithnO (20(") log n)
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times to get high probability of correctness. |

4 k-center clustering with outliers

In this section, we extend our algorithm from Section 2 todtarmutliers.

Definition 4.1 For a point-seP in RY, let reen(P,k,a) denote the minimal radius clustering with
outliers; namely, we allow to throw ouwt|P| outliers. Computing this value is tHé&, a)-center
problem. Formally,
reen(P K, 0) = min r K).
corlPiHo ) = o p g DT aypy Y
The problem of computing-center with outliers is interesting, as the standaagnter clus-
tering is very sensitive to outliers.

Theorem 4.2 For any point-set R= RY, parametersl > €,a > 0, > 0, a random sample R of
O(1/(ep)) points from P spans a flat containing(a + €, 1, 1+ a)-approximate solution for the
1-center witha-outliers for P. Namely, there is a pointgpsparfR), such that the ball of radius
(1+¢€)reen(P, 1,0) centered at p, contains at least— a — ) points of P.

Furthermore, we can compute such a cluster {if @, p)nd) time, where fe,u) = exp(O <$ log? &1))

Proof: Let copt denote the center of the optimal solutiogs: = rcen(P, 1, o) denote its radius,
and Bope = Ball(Copt, Fopt). Let sy,...,s be our random sampld; = spartsy,...,s), andc =
proj(Copt, Fi), and we sef = /¢, and

Ui = {X‘T[/Z—BS ZCoptCiX < T[/2+B}a

be the complement of the cone of angle B emanating front;, and having:icypt as its axis.
Let R = UiNPN By For any pointp € B, we have

Namely, as far as the points Bfare concerned; is a good enough solution.

LetQ; = P\P. Aslong asQj| > (a+W)|P|, we have a probability of Auto sample a random
point that is inQ; and is not an outlier. Arguing as in the proof of Theorem $i1Xuch a case, the
distance of the current flat @ shrank down by a factor qfL — 3?/4). Thus, as in the proof of
Theorem 3.2, we perform the random sampling in rounds. Ircase, we nee®((1/¢)log(1/¢))
rounds, and each round requires in expectatigmrindom samples. Thus, overall, if we sam-
ple M = O((1/(gp))log(1/¢€)) points, we know that with constant probability, sg&n...,sw)
contains a point in distan@qpt from copy.

As for the algorithm, we observe that using random sampliregcan approximate,pt(P, 1, o)
up to a factor of two irp(dn) time. Once we have this approximation, we can generate & set o
candidates, as done in Theorem 3.4. This would result in

R
f(e,W) =0 ((@) . \R\> _ 20((1/(ew)log? (1/ ew)
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candidates. For each candidate we have to s@nd) time on checking its quality. Overall, we
get f (¢, ynd running time. [ |

Remark 4.3 Theorem 4.2 demonstrates the robustness of the samplinrgaagbpwe use. Al-
though we might sample outliers into the sampleRethis does not matter, as in our argumen-
tation we concentrate only on the points that are sample@cily. Essentially, digf;, Copt) is a
monotone decreasing function, and the impact of outlisrsnly on the size of the sample we need
to take.

Theorem 4.4 For any point-set R~ RY, parameterd > €,a > 0, > 0,k > 0, one can compute a
(k, o + p)-center clustering with radius smaller thafi + €)reen(P k, o) in 2/5H°nd time. The
result is correct with constant probability.

Proof: Let P/ be the set of points d? covered by the optimat-center clusteringy, .. .,C,
with an outliers. Clearly, if any of th€;s contain less thafu/k)n points of P, we can just skip it
altogether.

To apply Theorem 4.2, we need to samflgk/(ep)) points from each of those clusters (we
apply it with p/k for the allowed fraction of outliers). Each such clustess bize at leasty/k)n,
which implies that a sample of sizg(k?/(p€)) would contain enough points fro@. To im-
prove the probabilities, we would sam¢k3/(p%e)) points. LetR be this random sample. With
constant probability (by the Markov inequalityRNCi| = Q(k/(ep)), fori =1,... k. We exhaus-
tively enumerate for each point & to which cluster it belongs. For such partition we apply the

algorithm of Theorem 4.2. The overall running time @/ (EW°Y)ng, n

5 The1-cylinder problem

Let P be a set o points inRY, we are interested in finding a line which minimizes the maxim
distance from the line to the points. More specifically, we aateresting in finding 1+ €)
approximation to the problem in polynomial time.

In the following, let/yp: denote the axis-line of the optimal cylindegy: = radiugP, £opt) =
maXpep || Lopt — P|| denote its radius, andop denote the hyperplane perpendicular/gg; that
passes through the origin.

In this section, we prove the following theorem:

Theorem 5.1 Given a set of n points iR, and a parameteg > 0, one can compute, if#°9(1/¢)/¢%)
aline |, such thatadiugP,l) < (1+¢€)ropt, Where gyt is the radius of the minimal-cylinder that
contains P.

5.1 The Algorithm

First, observe that one can compute a 2-approximation tditdinder problem by finding the
furthest away 2 pointp,q € P (i.e., the diameter) and taking the minimum cylinder haviagas
its axis that containB. It is easy to verify that the radil of this cylinder is at mosti2, where
l'opt IS the radius of the smallest cylinder. ComputRiakesO(n?d) time.

12



Let | be the center line of an optimal solution with cogg.. We will assume that the value
of ropt is known to us (up to a factor very close to 1), as we can enumalibpotential values of
ropt in the rangeR/2...R. The high-level idea of the algorithm is to computéla+€) distortion
embedding of then points fromRY into RI°9 n/e?, “guess” the solution to the problem there and
then to retrieve the solution in the original space. Howeaeimple application of this method
is known to not work forcontinuousclustering problems (and 1-cylinder in particular), du¢h®
following problems:

e The optimal solution found in the low-dimensional spacesduoat have to correspond to any

solution in the original space.

e Even if this was true, it is not clear how to retrieve the hdjmensional solution from the

low-dimensional one.

To overcome this difficulties, we proceed as follows:

1.

In the first step, we find a poittlying on the/y. To be more precise, we “guess” it (by
enumerating polynomially many candidates) instead of figdti; moreover, the point does
not lie on the line by only sufficiently close to it.

. We remove fron® all the points within distancél + €)rqp from h. Since our final solution

line passes through it is sufficient to find a solution for the smaller &t

. We embed the whole space into a low-dimensional spack teatwith high probability for

all pointsp € P, the angles/ ph,; are approximately preserved.
As we discuss later, such an embeddinig guaranteed by Johnson-Lindenstrauss lemma.

. We guess (approximately) the low-dimensional imAgef the linel (again, by exploring

polynomially many possibilities). By the properties of #trabeddingd, we can detect which
points inP lie on the positive side of thed — 1)-dimensional hyperpland passing through

h and orthogonal td. We modify the seP by replacing each poin from the negative side
of the hyperplane by its reflection arouhd Note that this operation does not increase the
solution cost by too much.

It is now sufficient to find an optimal half-infinitay beginning at poinh, to minimize the
distance fromP to the ray. Moreover, we know that the points are on the sade af a
(d — 1)-dimensional hyperplane that passes throhglThis problem can be solved using
convex programming tools.

Thus, we use the low-dimensional image @ discover the “structure” of the optimal solution,
namely which points lie on which side of the hyperpld&heKnowing this fact allows us to reduce
our (non-convex) problem to a convex one.

5.2

Detailed description of computing the approximatel-cylinder

In the following, we elaborate on each step in computing the-radius cylinder containing a
point-set.
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5.2.1 Step 1: finding a point near the line

In order to find the poinh, we will need to embed additional “helper” points. For eachsetS of
=|S = O(1/¢?), we compute am-net on the interior of the convex body spanned by them.

Definition 5.2 LetU be any set of points iiR?, ande > 0 be a parameter. We say that a subset
V of points is ane-netfor U if for any line £ that intersectg"# (U ), there is av € V such that

Lemma 5.3 Let U be a set of points iR ande > 0 be a parameter. We can compute &net
A(U) for U in (JU|25/¢)90YD time. The cardlnallty of JU) is (|U|25/¢)OVD,

Proof: Let H the (M — 1)-di <
and letE£ C H be an ellipsoid such that/(M +1)> C CH(U) C ‘E, whereE/(M + 1)? is the
scaling down ofE around its center by a factor of (M + 1)2. Such an ellipsoid exists (a stronger
version of this statement is known as John theorem), and eastoimputed in polynomial time
in |U| [GLS88, Section 4.6]. LeB be the minimum bounding box & which is parallel to the
main axises ofE. We claim, thatB3/v/M is contained insideE. Indeed, there exists a linear
transformationZ that mapsg to a unit balls. The pointg = (1/v/M,1/V/M,...,1/v/M) lies on
the boundary of this sphere. Cledr,%(q) is a corner ofB/+/M, and is on the boundary @. In
particular,

A(B) = VMA(B/VM) < VMA(E)
< VM(M+1)%A(E/(M+1)%) < VM(M+1)%A(U).

For any line/, the same arguments works for the projection of those estiti the hyperplane
perpendicular td. Let 7 P, denote this projection, we have:

ATPy(B) < VM(M+1)2A(TP,V))
< 2VM(M+1)2dist(U, ).

Next, we partitionB into a grid, where each grid cell is a translated copgof (£/2) B/(2V/M(M
1)2). This grid has/ = (M?3/¢)°M) vertices, and leA(U) denote this set of vertices.

Let £ be any flat intersecting# (U). We claim that one of the points l(U) is in distance
< £dist(U, £) from £. Indeed, lez be any point inC# (U)N£4. Let B be the grid cell containing
z, and letv be one of its vertices. Clearly,

distve) < (T2 TPA2)]| < ATPAR))
€ 1 €
_ ST ATPB)) < =dis{U, ),
which establishes our claim. u
Let G(S) = A(S) as defined by Lemma 5.3. Clearla(S)| = (|5%°/¢)°(S), where|S =
O(1/£?). We have
IG(S)| = 2PU0a(1/e)/e%),
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Figure 3: Any point inside the convex body has at least 1 “&€lpoint at distance at mosf 2rpt
after the embedding.

Lemma 5.4 Consider the points in () for all sets S. At least one of those points is at nsogj
away fromZgpt.

Proof: Project all the points into a hyperplahf,, and denote this set of points BY. Leto
be the point corresponding to the line intersected Mgl Since all the points are at distance at
mostrop: from |, all the points projected intel will be at distance at mosgp: from o. Compute
the minimum enclosing ball of the point-get It is easy to see that if the origin of the minimum
enclosing ball is nob, then we can come up with a solution for the minimum fittingelwf cost
lower thanrqp by just translating to intersect the center of the ball. Therefore, it must bé tha
the minimum enclosing ball d® has the origin im. By Theorem 2.5, there exists a &t P/,
|S = O(1/€?), such that the minimum enclosing ball of tBds at most(e/2)rop away fromo
and since the center of any minimum enclosing ball of a sebaitp can be written as a convex
combination of the points, we conclude that there existsiatgm a convex combination of the
points ofSsuch thaD(p,0) < erqpt. Also, distance fronp to the closest point oB(S) is at most

Therefore, there exists a point in ogtnet that is at mostrope away from the optimal fitting
line. |

5.2.2 Step 2: Removing the points nealn

For the simplicity of the exposition, we assume, from thigypon, thath lieson the optimal line
Lopt. We remove fronP all the points within distancél + €)rqpt from h.

The removal step can be clearly implemented in linear timesedve that after this step, for
all pointsp, the angle betweeph and/q is in the rangd0, /2 — /2] U [1/2+€/2, 11 for small
enoughe. As we will see in the next section, this property impliestttine angles do not change
the value from less tham/2 to greater tham/2 after applying the dimensionality reduction.
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5.2.3 Step 3: Random projection

In this section we show how to find a mappiag R — RY for d’ = O(logn/&2) which pre-
serves all angles{hpéopt, € P, up to an additive factor of/3. For this purpose we use the
Johnson-Lindenstrauss lemma. It is not difficult to veréyg(, see [EIO02]) that if we set the error
parameter of the JL lemma ¢gC for large enough consta@t then all the aforementioned angles
are preserved up to an additive factor of, gg¢. This implies that for each € P, the image of the
point p is on the same side of the (image of) the hyperpldres the original pointg. Moreover,
for any p € P the anglM(Wp,éopt) are in the rangé0, /2 — /4| U [1/2+€/4,T1, i.e., are still
strictly separated fromnm/2.

5.2.4 Step 4: Guessing the image of

We now need to guess (approximately) the imadg,:, whereA is the mapping generated by
the JL lemma. For this purpose, we need to know the directidn gince we already know one
point through which the linéd¢,pt passes through. Our approach is to enumerate all “different
directions of a lineAl,pt. Obviously, the number of such directions is infinite. Hoeggince we
use the lineexclusivelyfor the purpose of separating the poiqts P depending on their angle
/hp Plopt, and those angles are separated figfR by £/4, it is sufficient to find a direction vector
which is within angular distance/4 from the direction of. Thus, it is sufficient to enumerate all
directions from arg/4-net for the space of all directions. It is known that sucicgs of cardinality
(1/¢)°(d) = nO(log(1/e)/e%) exist and are constructible. Thus, we can find the righttiamtof points
in P by enumerating a polynomial number of directions.

After finding the right partition ofP (say, intoP_ and PRr), we replace each point iR by

its reflection througth; call the resulting self = {Zh— plpe P}. Note that there is a one-to-

one correspondence between the 1-cylinder solution® fehich pass through and the lray

solutions forP’ = P/ U Pg; the 1-ray problem is defined as to find a nayvith an endpoint at
h which minimizes the maximum, over all input poings of the distance fronp to r. Thus, it

remains to solve the 1-ray problem fe.

5.2.5 Step 5: Solving thel-ray problem using convex programming

We focus on the decision version of this problem. Assume wa Yeacheck if there is a solution
with cost at mosT . For each poinp, define a con€;, to be the set of all rays with endpointshn
which are within distancé from p. Clearly,C, is convex. The problem now corresponds to check-
ing if an intersection of all con&s, is nonempty, which is an instance of convex programming and
thus can be solved up to arbitrary precision in polynomiakt{GLS88].

6 Conclusions

In this paper, we presented several very fast algorithmddorg (1 + €)-approximate clustering.
Our algorithm relied on the ability to compute small corésder those clustering problems. We
believe that the techniques presented in this paper mighsétil for other clustering problems.
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In particular, it would be interesting to extend the set alppems for which we know the existence
and construction of a small core-set.
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