COS 521: Advanced Algorithms Design February 3, 2004
Prof. Moses Charikar and Dr. Chandra Chekuri

Lecture 1: Hashing - Applications to Data Structures
Lecture: Prof. Moses Charikar Scribe: Shien Jin Ong

1 The Fundamental Data-structuring Problem

Consider the problem of implementing a dictionary to determine whether an element z from the
universe U is in a given set S. The universe U is of size m, and the set S is of size s, with § C U.
We typically think of s < m. The operations to be supported are the following.

MakeSet(S): creates a new empty set S.
Insert(s,.5): inserts item 4 into set S.
Delete(%,.S): deletes item 4 from set S.
Find(k, S): returns 1 if k£ € S, else returns 0.

A standard solution would be to store the elements of S as a balanced search tree. Then, all
the above operations will run in O(log s) worst-case. In fact, representing S as random treaps or
random skip lists would give an expected O(log s) running time. Could we do better, say creating
a data structure such that all the above operations take only O(1) time?

In the comparison-based model (where we are only allowed to do relative comparison between
the elements), we cannot achieve a o(logs) running time, for or else we can sort n numbers in
o(nlogn) steps.

2 Hash Tables

If we go beyond the comparison-based model and assume that the (keys of the) elements are
represented as integers, we will be able to achieve an O(1) search time for the dictionary problem.
We will work in the full RAM model, where accessing an integer and doing an arithmetic operation
take O(1) time. In fact, we achieve O(1) search time for both the static and dynamic version of
the dictionary problem.

1. In the static version, we are given a set S and preprocess it into a data structure that supports
efficient Find(k, S) queries.

2. In the dynamic version, we are given an intermingled series of Find, Insert, and Delete
operations. We are required to perform these operations efficiently.

Recall that m represents size of the universe . We think of m are a huge number. For instance,
if I is the universe of all 32-bit integers, then m = 232. A trivial hashing solution that achieves
an O(1) search time would be to maintain an m-bit hash table H. Hash table H would have the
property that H(z) = 1 if x € S, and H(z) = 0 if z ¢ S. The major drawback of this naive

approach is the high storage requirement of the hash table, and the high initialization cost of the
table.

Formally, we can define a hash table to be a data structure that consists of the following two
components: a table T of size n indexed by N = {0,1,...,n — 1}, and a hash function h mapping
U to N. We index U by {0,1,...,m — 1}. In addition, to avoid trivial hash functions we assume
that n < m.

Ideally, we would like to store z € S in T'[h(z)]. Then, to check if z € S, we compute h(z) and
check that location in table T'. Nevertheless, this poses a problem if too many elements in S hashes
to the same value.

Definition 1 A hash function h : U — N is perfect for S CU if for all x # y € S, we have that
h(z) # h(y)-

While it is clear that a perfect hash function can always be constructed for a specific set S of
size less than n, there is no single hash function that is perfect for all sets. Therefore, to solve the
dictionary problem, what we need is family (collection) of hash functions such that for any set S
that is small, most hash functions in that family is perfect for it.

Definition 2 Let H be a family of functions mapping U to N. We say that H is 2-universal if for
all x # y € U, we have
1
Pr [h(z) =h < =
P [h(z) = hy)] <
Note that a (truly) random hash gives a collision probability of exactly 1/n, thus a 2-universal

family can be interpreted as a somewhat random hash function. Most construction of 2-universal
hashing actually yields a stronger property known as strongly 2-universal.

Definition 3 Let H be a family of functions mapping U to N. We say that H is strongly 2-
universal if for all © #y € U and for all n1,ne € N, we have

1
h(lirH[h(m) =ny and h(y) = no] = 3

If we have an efficient implementation of H satisfying the 2-universal property, we can solve
both the static and dynamic version of the dictionary problem. Given the inputs, we randomly
choose a hash function A from the family H and use it hash elements of the universe /. We store
z € S in T[h(z)]. If there are more than one element that hashes to the same value, we store them
using a link list. The claim is that each link list in the table T' will have expected depth O(1).
Thus, the Insert, Delete, and Find operations will run in expected time O(1). The proof of the
claim is left as an exercise for the students in the class.

The crucial property of 2-universal hash functions is that the collision probability is small, in
our definition, less than 1/n. While it would be in our interest to reduce this probability as much
as possible, the following lemma shows that we cannot do much better when m > n.

Lemma 4 For any family H of functions from U to N there exist x,y € U such that

1
Pr[h(z) = h(y)] >~

1
m

Proof: Define the indicator function for collision of x and y under h as follows.

Sy, 1) = {1 for h(z) = h{y) and = # .

~ 10 otherwise.
Consider a fixed hash function h, and for each z € N define
A, ={z €l :h(z) =z}

We know that »°,|A,| = m. Because the total number of collisions is minimized when the sets
A, are all of the same size, we have

T€U yeU z
m /m
(5 (5 -1)
n n
1 1
(i)
n o m

The above equation holds for any fixed h. Therefore,

> > da,y,h) 2m?H]| (% _ l)

m
zeld yeU he H

Y

Consequently, there must exists a pair z,y such that

> (z,y,h) > |H] (l _ i)

n m
heH

Since Prp g[h(z) = h(y)] = ﬁ > hem 9(z,y,h), our proof is complete. |

