Homework #4 Boosting Due: March 9, 2004

Problem 1

Consider a variant of AdaBoost in which we set $\alpha_t = \alpha$ on every round of boosting, where $\alpha > 0$ is a fixed parameter that is set ahead of time. Call this algorithm Boost(α).

Assume that on every round t of boosting, it is known ahead of time that ϵ_t will be at most $1/2 - \gamma$, for some number $\gamma > 0$. Suppose that we set

$$\alpha = \frac{1}{2} \ln \left(\frac{1+2\gamma}{1-2\gamma} \right).$$

- a. [10] Show how to modify the training-error analysis of AdaBoost to derive an upper bound on the training error of the final hypothesis H produced by Boost(α) after Trounds. Your bound should be in terms of γ and T only (and should not depend on α , ϵ_t , etc.).
- b. [5] Use your result in part (a) to show that the final hypothesis H will be consistent with m training examples (i.e., have zero training error) after T rounds if

$$T > \frac{\ln m}{2\gamma^2}.$$

c. [10] Assume that the weak learning algorithm generates hypotheses h_t which belong to a finite class \mathcal{H} . Use Occam's razor to show that if we choose T as in part (b), then with probability $1 - \delta$, the generalization error of H is at most

$$\frac{T\ln|\mathcal{H}| + \ln(1/\delta)}{m}$$

Problem 2

Let $X = \{-1, +1\}^n$. For $\mathbf{x} \in X$, let x(i) denote the *i*th component of \mathbf{x} so that $\mathbf{x} = \langle x(1), x(2), \ldots, x(n) \rangle$.

Let \mathcal{M}_k be the set of concepts $c : X \to \{-1, +1\}$ for which there exist $i_1, \ldots, i_k \in \{1, \ldots, n\}$ (not necessarily distinct) such that

$$c(\mathbf{x}) = \operatorname{sign}\left(\sum_{j=1}^{k} x(i_j)\right) \tag{1}$$

for all $\mathbf{x} \in X$. (As usual, we define sign(0) = 0. Note that this implies that, if $c \in \mathcal{M}_k$, then $\sum_i x(i_i)$ cannot be equal to 0 for any \mathbf{x} since $c(\mathbf{x}) \in \{-1, +1\}$.)

Roughly speaking, in this problem, you will show that a concept c is γ -weakly learnable by the features $x(1), \ldots, x(n)$ for $\gamma = \Omega(1/\text{poly}(n))$ if and only if c is in \mathcal{M}_k for k = poly(n).

a. [5] For any concept $c: X \to \{-1, +1\}$ and distribution D on X, show that

$$E_{\mathbf{x}\sim D}\left[c(\mathbf{x})x(i)\right] = 1 - 2\Pr_{\mathbf{x}\sim D}\left[c(\mathbf{x}) \neq x(i)\right].$$

b. [5] Let c be as in Eq. (1). Argue that

$$\sum_{j=1}^{k} \mathbf{E}_{\mathbf{x} \sim D} \left[c(\mathbf{x}) x(i_j) \right] \ge 1$$

for every distribution D on X.

c. [10] Let $c \in \mathcal{M}_k$. Use parts (a) and (b) to show that for every distribution D on X, there exists an index $i \in \{1, \ldots, n\}$ such that

$$\Pr_{\mathbf{x}\sim D}\left[x(i)\neq c(\mathbf{x})\right] \leq \frac{1}{2} - \frac{1}{2k}$$

d. [10] Consider a weak learning algorithm A that works as follows: Given a training set $\langle (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \rangle$, and a distribution D_t over the examples, A outputs the hypothesis $h_t(\mathbf{x}) = x(i^*)$ where i^* has minimum error with respect to the examples and distribution. That is,

$$i^* = \arg\min_{1 \le i \le n} \sum_{j: x_j(i) \ne y_j} D_t(j).$$

Let $c : X \to \{-1, +1\}$ be any concept, and let $\gamma > 0$. Suppose that, for every distribution D on X, there exists an index i such that

$$\Pr_{\mathbf{x} \sim D} \left[x(i) \neq c(\mathbf{x}) \right] \le \frac{1}{2} - \gamma.$$

Use your analysis of $Boost(\alpha)$ and the weak learner described above to show that $c \in \mathcal{M}_k$ if

$$k > \frac{n\ln 2}{2\gamma^2}$$

Problem 3 – Extra Credit

[15] In class, we showed how a weak learning algorithm that uses hypotheses from a space \mathcal{H} of bounded cardinality can be converted into a strong learning algorithm. This result can be generalized to weak hypothesis spaces of bounded VC-dimension. However, strictly speaking, the definition of weak learnability does *not* include such restrictions on the weak hypothesis space. The purpose of this problem is to show that weak and strong learnability are equivalent, even without these restrictions.

Let \mathcal{C} be a concept class on domain X. Let A_0 be a weak learning algorithm and let $\gamma > 0$ be a (known) constant such that, for $\delta > 0$, for every concept $c \in \mathcal{C}$ and for every distribution D on X, when given $m_0 = \text{poly}(1/\delta)$ random examples x_i from D, each with its label $c(x_i)$, A_0 outputs a hypothesis h such that, with probability at least $1 - \delta$,

$$\Pr_{x \in D} \left[h(x) \neq c(x) \right] \le \frac{1}{2} - \gamma.$$

Note that no restrictions are made on the form of h, or on the cardinality or VC-dimension of the space from which it is chosen.

Show that A_0 can be converted into a strong learning algorithm using boosting. That is, construct an algorithm A such that, for $\epsilon > 0$, $\delta > 0$, for every concept $c \in C$ and for every distribution D on X, when given $m = \text{poly}(m_0, 1/\epsilon, 1/\delta, 1/\gamma)$ random examples x_i from D, each with its label $c(x_i)$, A outputs a hypothesis H such that, with probability at least $1 - \delta$,

$$\Pr_{x \in D} \left[H(x) \neq c(x) \right] \le \epsilon.$$

Show that the number of examples needed by this algorithm is polynomial in m_0 , $1/\epsilon$, $1/\delta$ and $1/\gamma$.