

Subdivision Surfaces

Thomas Funkhouser Princeton University COS 426, Spring 2004

Modeling

- How do we ...
 - Represent 3D objects in a computer?
 - Construct 3D representations quickly/easily?
 - Manipulate 3D representations efficiently?

Different representations for different types of objects

3D Object Representations

- Raw data
 - Voxels
 - Point cloud
 - Range image
- Polygons
- Surfaces
 - Mesh
 - $\circ \ \ \text{Subdivision}$
 - ParametricImplicit

- Solids
 - Octree
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

3D Object Representations

- Raw data
 - Voxels
 - Point cloud
 - Range image
 - Polygons
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Octree
 - BSP tree
 - CSG
 - Sweep
- · High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

H&R Figure 10.46

Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology

Ø Guaranteed continuity

- Natural parameterization
- Efficient display
- Efficient intersections

H&B Figure 10.46

Loop

- How to choose β?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices
 - » Original Loop

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$
where
$$\beta = \begin{cases} \frac{3}{8n} & n > 3 \\ \frac{3}{16} & n = 3 \end{cases}$$

Summary

- Advantages:
 - Simple method for describing complex surfaces
 - Relatively easy to implement
 - Arbitrary topology
 - Local support
 - Guaranteed continuity
 - Multiresolution

• Difficulties:

- Intuitive specification
- Parameterization
- Intersections

