-
3D Rendering Pipeline (for direct illumination) &

%

~

Scan Conversion
& Shading
Thomas Funkhouser

Princeton University
COS 426, Spring 2004

-

Overview W

3D Primitives
3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewpori_
Transformation

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image

=

3

Scan Conversion
& Shading

-
Scan Conversion

* Scan conversion
o Figure out which pixels to fill

» Shading

o Determine a color for each filled pixel

-

Scan Conversion W

* Render an image of a geometric primitive
by setting pixel colors

[void SetPixel(int x, int y, Color rgha) l

« Example: Filling the inside of a triangle

P

* Render an image of a geometric primitive
by setting pixel colors

| void SetPixel(int x, int y, Color rgba) |

« Example: Filling the inside of a triangle

P

-

Triangle Scan Conversion

o Symmetric
o Straight edges

o MUST BE FAST!

o Antialiased edges
o No cracks between adjacent primitives

* Properties of a good algorithm

Py

p
Triangle Scan Conversion

« Properties of a good algorithm
o Symmetric
o Straight edges
o Antialiased edges
o No cracks between adjacent primitives
o MUST BE FAST!

&

-
Line defines two halfspaces

 Implicit equation for a line
o Online: ax+by+c=0
o Onright: ax+by+c<0
o On left: ax+by+c>0

-
Inside Triangle Test

Boolean Inside(Triangle T, Point P)

for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;
[

-
Simple Algorithm gﬁ

« Color all pixels inside triangle

void ScanTriangle(Triangle T, Color rgha){
for each pixel P at (x,y)}{
if (Inside(T, P))
SetPixel(x, y, rgba);

P

P

s

Inside Triangle Test

* A point is inside a triangle if it is in the
positive halfspace of all three boundary lines
o Triangle vertices are ordered counter-clockwise
o Point must be on the left side of every boundary line

Ly
LS
Lo
s
Simple Algorithm Qﬁ
¢ What is bad about this algorithm?
void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){
if (Inside(T, P))
SetPixel(x, y, rgba);
}
P
PZ
PS

r

Triangle Sweep-Line Algorithm

« Take advantage of spatial coherence

o Compute which pixels are inside using horizontal spans

o Process horizontal spans in scan-line order

« Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy{ >

-

Polygon Scan Conversion

« Fill pixels inside a polygon
o Star-shaped
o Concave

o Triangle
o Quadrilateral j :

o Self-intersecting

o Holes :} \//l 7 @

o Convex
What problems do we encounter with arbitrary polygons?

J

-

Inside Polygon Rule

* Whatis a good rule for which pixels are inside?

tag

Concave

Self-Intersecting With Holes

-

Triangle Sweep-Line Algorithm

| Bresenham’s algorithm

void ScanTriangle(Triangle T, Color rgha){
for each edge pair {
initialize x L X R
compute dx /dy | and dx gdy g
for each scanline aty
for (int x = x LX<= X
SetPixel(x, y, rgba);
x, +=dx /dy ;
Xg +=dx gdy g

R X++)

ax dxg

<], dyg

works the same way,
but uses only integer
operations!

Vs

Polygon Scan Conversion

« Need better test for points inside polygon
o Triangle method works only for convex polygons

Lg L
4
I—l
Ls
Lo

Convex Polygon

Concave Polygon

X
|_ \
5 L |
Lss
Lsa
L, i

J

Vs

Inside Polygon Rule

¢ Odd-parity rule

o Any ray from P to infinity crosses odd number of edges

e

Concave

Self-Intersecting With Holes

r

Polygon Sweep-Line Algorithm

¢ Incremental algorithm to find spans,
and determine insideness with odd parity rule
o Takes advantage of scanline coherence

2\

£
£\

Triangle Polygon

Vs

Hardware Scan Conversion

» Convert everything into triangles
o Scan convert the triangles

Vs

Overview

« Shading
o Determine a color for each filled pixel

s

Polygon Sweep-Line Algorithm

void ScanPolygon(Triangle T, Color rgba){
sort edges by maxy
make empty “active edge list”
for each scanline (top-to-bottom) {
insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate
for each pair of active edges (left-to-right)
SetPixels(X ;, X i1 ,Y, rgba);

N
| \

s

Hardware Antialiasing

« Supersample pixels
o Multiple samples per pixel
o Average subpixel intensities (box filter)
o Trades intensity resolution for spatial resolution

Py

P

s

Shading

* How do we choose a color for each filled pixel?
o Each illumination calculation for a ray from the eyepoint
through the view plane provides a radiance sample
» How do we choose where to place samples?
» How do we filter samples to reconstruct image?

Emphasis on methods that can
be implemented in hardware

CoP Angel Figure 6'34/

Vs

~

Ray Casting gnﬁ

¢ Simplest shading approach is to perform
independent lighting calculation for every pixel
o When is this unnecessary?

Ve

Polygon Shading Algorithms

¢ Flat Shading
* Gouraud Shading
» Phong Shading

Ve

Flat Shading ﬂ

* What if a faceted object is illuminated only by
directional light sources and is either diffuse or
viewed from infinitely far away

~/4
(= |E+KAIAL+Zi(KD(N. L) +Ks(V=R)"))
J

4 N\

Polygon Shading gﬁ

« Can take advantage of spatial coherence

o lllumination calculations for pixels covered by same
primitive are related to each other

Vs

Polygon Shading Algorithms

¢ Flat Shading
« Gouraud Shading
» Phong Shading

J
4 N\
Flat Shading Qﬁ
* One illumination calculation per polygon
o Assign all pixels inside each polygon the same color
4
=]
J

r

-
Flat Shading gnﬁ

« Obijects look like they are composed of polygons
o OK for polyhedral objects
o Not so good for smooth surfaces

. /

-

Gouraud Shading

« What if smooth surface is represented by
polygonal mesh with a normal at each vertex?

Watt Plate 7

I =|E+KA|AL+Zi(KD(N° L)l +Ks(V+R)"I)
J

-

Gouraud Shading gw%

« Bilinearly interpolate colors at vertices
down and across scan lines

-

Polygon Shading Algorithms

¢ Flat Shading
e Gouraud Shading
« Phong Shading

r

Gouraud Shading

« Method 1: One lighting calculation per vertex
o Assign pixels inside polygon by interpolating colors

computed at vertices

Viewer

r

Gouraud Shading

* Smooth shading over adjacent polygons
o Curved surfaces
o lllumination highlights
o Soft shadows

Mesh with shared normals at vertices

Watt Plate 7/

r

~

Gouraud Shading

¢ Produces smoothly shaded polygonal mesh
o Piecewise linear approximation
o Need fine mesh to capture subtle lighting effects

"‘F-“r’

Flat Shading

Gouraud Shading

-

Phong Shading

¢ What if polygonal mesh is too coarse to capture
illumination effects in polygon interiors?

' éLight

Viewer N,

N, Polygon

I =|E+KA|AL+Zi(KD(N° L)l +Ks(V+R)"I)
J

-

Phong Shading

« Bilinearly interpolate surface normals at vertices
down and across scan lines

N,

-

Polygon Shading Algorithms

¢ Flat Shading
¢ Gouraud Shading
¢ Phong Shading

Vs

Phong Shading

« Method 2: One lighting calculation per pixel

o Approximate surface normals for points inside polygons
by bilinear interpolation of normals from vertices

Viewer N,

N, Polygon

Vs

Polygon Shading Algorithms

Wireframe Flat

Watt Plate 7/

s

Shading Issues

¢ Problems with interpolated shading:

o Polygonal silhouettes

o Perspective distortion

o Orientation dependence (due to bilinear interpolation)
o Problems computing shared vertex normals

o Problems at T-vertices

s

Summary

¢ 2D polygon scan conversion
o Paint pixels inside primitive
o Sweep-line algorithm for polygons

» Polygon Shading Algorithms

o Flat Less expensive

o Gouraud

o Phong

o Ray casting More accurate
* Key ideas:

o Sampling and reconstruction
o Spatial coherence

