Renato Werneck

Dynamic Trees

Online Minimum Spanning Trees

« Motivation (online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

« The online minimum spanning trees problem:
= Input: a sequence of edges (with costs), one at a time.

= Goal: keep the minimum spanning forest of the graph.

» An algorithm:
= For each new edge (v,w):
« If v and w belong to different components, insert the edge.

« Ifvand w are in the same component:
— Insert (v,w) into the solution; and
— Remove the most expensive edge in the cycle created.

Dynamic Trees

dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

f9)

¢h)

(a,d)

(ae)

(a,b)

®)

(ch)

(de)

(ef)

(c,9)

(CAD)

(byc)

(be)

(b.9)

olofofula s [e[a]afo [N[o [o]5]o

edge

cost

9

¢ Fh)

o
Q

(a,d)

(ae)

Ro

(a,b)

df)

oe h ®.f)

(c,h)

(de)

a0

<@

(ef)

(cg)

@)

(be)

(b.g)

(b,e)

olofofula s [e[a]fo [s[o [o]5]o

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

o
Q

Ro

oe 6 h

a©®

edge

cost

- (f9)

Gh)

(a,d)

(ae)

(a,b)

@)

®f)

(c,h)

(de)

(ef)

(c,9)

(g:h)

(bc)

(be)

(b.9)

e = S N F N PN FUR S R PN 15 N NI (S N N

edge

cost

9

¢ 0]

o
Q

(a,d)

(ae)

Ro

(a,b)

@)

oe 6 h @)

(c,h)

(de)

(c.9)

(g:h)

(bc)

(be)

(b.g)

RN RN E N FNE U T PN 1S NI TS N ST =N

Dynamic Trees

Dynamic Trees

Dynamic Trees

Renato Werneck

Online Minimum Spanning Trees

Online Minimum Spanning Trees

b c

s)
“\
g
6 Qe 6 h
Vs
d f

edge

cost

(f.9)

()

(a,d)

(ae)

(a,b)

(df)

(b))

(c,h)

(de)

(ef)

(c.9)

9.k

(byc)

(be)

(b,9)

olofofala s Jofa]la [N |o 5]

edge

(f9)

[20))

(a,d)

- (ae)

(a,b)

(df)

[CX))

(c,h)

(de)

(ef)

(c.9)

@,k

(bc)
(b,e)

(b.g)

olofale[s]a[ofaafals o]o] o]g

Dynamic Trees

dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

r9)

¢h)

(a,d)

(ae)

(a,b)

@f)

®)

(c,h)

(de)

(ef)

(c9)

(CAD)

(b0

(be)

(b.9)

olofofula s [e[a]afo [s[o [o]5]o

edge

9

Fh)

(a,d)

(ae)

(a,b)

~(dp

®

(c,h)

(de)

(ef)

(cg)

@)

(be)

(b,e)

(b.g)

olofale]s]a]sfa]ela []a]o]]o]g

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

f9)

Gh)

(a,d)

(ae)

(a,b)

@)

-

(c,h)

(de)

(ef)

(c,9)

(g:h)

(bc)

(be)

(b.9)

=N S N F N FNG FUR S R PN 15 N NI (S N N

edge

cost

9

&h)

(a,d)

(ae)

(a,b)

[C))

)

- (&h)

(de)

(ef)

(c.9)

(g:h)

(bc)

(be)

(b.g)

R RN ENE FNE U TS PN IS NI TS N ST =N

Dynamic Trees

Dynamic Trees

Dynamic Trees

Renato Werneck

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

(f.9)

()

(ad)

(ae)

(a,b)

(df)

(b.)

(c,h)

- (de)

(ef)

(c.9)

9.k

(byc)

(be)

(b,9)

olofofals s Jofa]la [N |o 5]

edge

(f9)

[20))

(a,d)

(ae)

(a,b)

(df)

(b)

(c,h)

(de)

- (&)

(c.9)

@,k

(bc)

(b,e)

(b.g)

olofale[s]a[ofaafals o]o] 018

Dynamic Trees

dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

f9)

¢h)

(a,d)

(ae)

(a,b)

@f)

®)

(c,h)

(de)

(ef)

- (c.9)

(CAD)

(b0

(be)

(b.9)

olofofula s [e o]l [s[o [o]5]o

edge

9

Fh)

(a,d)

(ae)

(a,b)

df)

®

(c,h)

(de)

(ef)

(cg)

- (g:h)

(be)

(b,e)

(b.g)

olofale]s]a]sfa]ela []a]o]]o]g

Dynamic Trees

Dynamic Trees

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge

cost

f9)

Gh)

(a,d)

(ae)

(a,b)

@)

®f)

(c,h)

(de)

(ef)

(c,9)

(g:h)

- (bo)

(be)

(b.9)

e = S N F N PN FUR S R PN 15 N NI (S N N

edge

cost

9

&h)

(a,d)

(ae)

(a,b)

@)

)

(c,h)

(de)

(ef)

(c.9)

(g:h)

(be)

- (be)

(b.g)

R RN E N FNE U T PN IS NI TS N ST =N

Dynamic Trees

Dynamic Trees

Dynamic Trees

Renato Werneck

Online Minimum Spanning Trees

Online Minimum Spanning Trees

edge | cost

(f.9)

()

(ad)

(ae)

(a,b)

(df)

(b))

(c,h)

(de)

(ef)

(.9)

(g,h)

(byc)
(be)

olofofala s Jofa]ala [N |o 5]

- (bg)

edge
(f9)
(hh)
(a,d)
(ae)
(a,b)
(df)
(b:f)
(c,h)
(de)
(ef)
(c.9)
@h)
(bc)
(b,e)
(b.9)

olofale[s]a[ofaafals o]o] o]g

Dynamic Trees

dynamic Trees

Online Minimum Spanning Trees

Dynamic Trees

« How fast is the algorithm?
= How fast can we find the most expensive edge in a cycle?
« O(log n), with the right data structure.

= Total running time: O(m log n) (m edges, n vertices)

« Motivation (online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

Dynamic Trees

Dynamic Trees

Dynamic Trees - Problem Definition

Dynamic Trees

« Goal: maintain a forest of rooted trees with costs on vertices.
= Each tree has a root, every edge directed towards the root.

« Operations allowed:
= link(v,w): creates an edge between v (a root) and w.
= cut(v): deletes edge (v, p(v)) (where p(v) is its parent).
= findcost(v): returns the cost of vertex v.
= findroot(v): returns the root of the tree containing v.
= findmin(v): returns the vertex w of minimum cost in the path
from v to the root.
« A possible extension:

= evert(w): makes w the root of its tree

« An example (two trees):

Dynamic Trees

Dynamic Trees

Dynamic Trees

Renato Werneck

Dynamic Trees

Dynamic Trees

Dynamic Trees

dynamic Trees

Dynamic Trees

= findmin(s) =b
= findroot(s) = a
= findcost(s) = 2

Applications

Dynamic Trees

« Used as a building block of several graph algorithms:
= online minimum spanning trees
= dynamic graphs
= directed minimum spanning trees

= network flows (e.g., maximum flow)

Dynamic Trees

Dynamic Trees and Online MSTs

« How can dynamic trees help us in the online MST problem?
= We must answer the following (equivalent) questions:
« Should we insert (c,g), with cost 4, into the following tree?
« Is (c,g) cheaper than some other edge in the cycle it creates?
« What is the most expensive edge in the path between c and g?

Dynamic Trees and Online MST

Dynamic Trees

« How can dynamic trees help us in the online MST problem?
= We must answer the following (equivalent) questions:
« Should we insert (c,g), with cost 4, into the following tree?
« Is (c,g) cheaper than some other edge in the cycle it creates?
« What is the most expensive edge in the path between c and g?

» Imagine the tree is rooted at g: now, what is the most expensive
edge in the path from c to the root?

Dynamic Trees

Dynamic Trees

Renato Werneck

Obvious Implementation of Dynamic Trees

« Each node represents a vertex.

« Each node x points to its parent p(x):
= cut, link, findcost: constant time.

= findroot, findmin: time proportional to path length.
« Acceptable if paths are small, but O(n) in the worst case.

« We can get O(log n) for all operations.

Dynamic Trees

Dynamic Trees

« Motivation (online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

dynamic Trees

Dynamic Paths

« We start with a simpler problem:
= Maintain set of paths subject to the following operation:
« split: removes an edge, cutting a path in two;
« concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;
« findmin(v): returns minimum-cost vertex in the path containing v.

SO

Simple Paths as Lists

Dynamic Trees

« Natural representation: doubly-linked list:
= Path characterized by two endpoints.
« findcost: constant time.
- concatenate: constant time.
« split: constant time.
« findmin: linear time (not good).

« Can we do it O(log n) time?

FOow

Simple Paths as Binary Trees

« Alternative representation: balanced binary tree.
= Leaves: vertices in symmetric order.
= Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

Dynamic Trees

« Compact alternative:

= Each internal node represents both a vertex and a subpath:
« subpath from leftmost to rightmost descendant.

<

Dynamic Trees

Dynamic Trees

Renato Werneck

Simple Paths: Maintaining Costs

« We store cost(x) directly on each vertex.

= Problem: findmin still takes linear time (must visit all vertices).

Simple Paths: Finding Minima

costs: 6 2 3 4 7 9 3
v, v, v, v, vy Vg v,
Dynamic Trees

« Also store mincost(x), minimum cost in subpath with root x.
= findmin(x) now runs in O(log n) time.

costs: 6 2 3 4 7 9 3
v, v, v, v, v, Vg v,
Dynamic Trees

Simple Paths: Data Fields

« Final version:

= Stores mincost(x) and cost(x) for every vertex x.

Simple Paths: Structural Changes

« Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.

= For balanced trees (AVL, red-black, etc.), this is O(log n):
« Rotations must be supported in constant time.
« We must be able to update mincost, but that’s easy:

() O
rotate(v)

R ©— 00 M«

mincost'(w) = min {cost(w), mincost(b), mincost(c)}
mincost’(v) = min {cost(v), mincost(a), mincost (w)}

Dynamic Trees

costs: 6 2 3 4 7 9 3
v, v, Uy v, vy Vg v,

Dynamic Trees

Splaying

« Simpler alternative to balanced binary trees: splaying.
= Does not guarantee that trees are balanced in the worst case.
= Guarantees O(log n) access in the amortized sense.
= Makes the data structure much simpler to implement.

« Basic characteristics:
= Does not require any balancing information;

= On an access to v:
« Moves v to the root;
« Roughly halves the depth of other nodes in the access path.

= Primitive operation: rotation.

« All operations (insert, delete, join, split) use splaying.

Splaying

Dynamic Trees

« Three restructuring operations:

O, O
ORI zig-2ag(x) () (=)
£ o — AAAA
NN (2
(v}
A
e zig(x) °
@ LA — A 2
AN ANIAY

@A
co st
(only happens if y is the original root)

Dynamic Trees

[\
Dynamic Trees

Renato Werneck

An Example of Splaying

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

DynamicTrees
An Example of Splaying
DymamicTrees
An Example of Splaying

Dynamic Trees

Dynamic Trees

Renato Werneck

An Example of Splaying An Example of Splaying

zig(a)

Dynamic Trees Dynamic Trees

An Example of Splaying An Example of Splaying

« Final result:

splay(a)
Dynamic Trees Dynamic Trees
Amortized Analysis Amortized Analysis of Splaying
« Bounds the running time of a sequence of operations. « Definitions:
« Potential function ® maps configurations to real numbers. = s(x): size of node x (number of descendants, including x);

« At most n, by definition.
= r(x): rank of node x, defined as log s(x);
» At most log n, by definition.

= ®; potential of the data structure (twice the sum of all ranks).
» At most n log n, by definition.

« Amortized time to execute each operation:
"=+ -,
« a;: amortized time to execute i-th operation;
« t; actual time to execute the operation;
« ®; potential after the i-th operation.

1 time f — « Access Lemma [ST85]: The amortized time to splay a tree
+ Total time for m operations: with root t at a node x is at most
b2

=2y @+ @y = D) ==+ 2, 6(r(D-r() + 1= OCog(s(t)/s(x))).

i=1.m

Dynamic Trees Dynamic Trees

Dynamic Trees

Renato Werneck

Proof of Access Lemma Proof of Access Lemma: Splaying Step
« Access Lemma [ST85]: The amortized time to splay a tree . Zig-zig: (=) (=)
with root t at a node x is at most (v /\ B!
6(r{D-r()) + 1 = OClog(s(8)/sC) LA YA O
T = CLogistt/sD- Claim: @ <6 (" (x) - r()) A A LA

« Proofidea: t+ - D <6 (r(x) - r(x)

* r{x) = rank of x after the i-th splay step; 2+ 2(r()+’ @) +17(2)) — 2(r(x)+r)+7(2)) < 6 ("(x) — r(x))

= ;= amortized cost of the i-th splay step; 14+ 7() + 1Y) + 1(2) — r(x) — 1Y) = (2) <3 ("0) - r(x))

1+7@Y) + @) - @) -ry) <3(°(x) - r(x)) since r'(x) = r(z)

= a;< 6(rx)-r;_,(x)) + 1 (for the zig step, if any)

L. . 1+ 1Y) +r'(z) — 2r(x) <3 (F(x) — rx)) since r(y) 2 r(x)
= a;< 6(r(x)-r;_,(x)) (for any zig-zig and zig-zag steps) 1470 + P(z) — 2r(x) < 3 (F() — r(9) since r'(0) = F'(y)
= Total amortized time for all k steps: rx)—re) + (@) -rE) <-1 rearranging
zi:l..k < zi:l..k—l [6(r)—r,_, ()] + [6(r0)-r_,()) + 1] log(s(x)/s'(x)) + log(s'(2)/s(x)) < —1 definition of rank

TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one

= 61 (x) — 6T (x) + 1 is at most —1/2 (and its log is at most —1)

Dynamic Trees Dynamic Trees
Proof of Access Lemma: Splaying Step Proof of Access Lemma: Splaying Step
o Zig-zag: (2 (= . Zig: () sigle) (=
O N B ONO. QA A
A & VANV NN AN NN
Claim: a < 4 ("(x) — r(x)) A A Claim: a <1+ 6 ("C0) — 1(x) (only happens if y is root)
t+® -0 <4 () -) t+ O - D<1+6(F() - ()
2 + (2r'(x)+2r'Q)+2r'(2)) - (2r(x)+2r@)+2r(z)) < 4 ("(x) - r(x)) 1+ (2r'()+2r(Yy)) — (2r(x)+2r@y)) <1+ 6 ((x) - r(x)
2+ 2r'(y) + 2r'(z) — 2r(x) — 2r(y) < 4 (F(x) — r(x)), since r'(x) = r(z) 1+2(P0) - r(x)) <1+ 6 (FK) - r(x)), since r(y) 2 r'(y)
2+ 2r'(y) + 2r'(z) — 4r(x) < 4 ("(x) - r(x)), since r(y) = r(x) TRUE because r(x) = r(x).
Y -re)) + (@ -ri)) s -1, rearranging
log(s'(y)/s'x)) + log(s'(2)/s’(x)) < —1 definition of rank
TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most —1/2 (and its log is at most —1).
Dynamic Trees Dynamic Trees
Splaying Dynamic Trees
« Summing up: « Motivation (online MSTs)

= Norotation:a=1

= Zigia<6(P(x)—r() +1

= Zig-zig: a <6 (r'(x) — r(x))
* Zig-7ag: a<4 (r(x) - r(x))
= Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n) « Extensions

« Problem Definition
« A Data Structure for Dynamic Paths

« A Data Structure for Dynamic Trees

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees Dynamic Trees

Dynamic Trees

Renato Werneck

Dynamic Trees

« We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

« Avertex v is exposed if:
= There is a solid path from v to the root;
= No solid edge enters v.

Dynamic Trees

Dynamic Trees

Dynamic Trees

« Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

dynamic Trees

Dynamic Trees

e Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

« Itisunique.

« Solid paths:
= Represented as binary trees (as seen before).

= Parent pointer of root is the outgoing dashed edge of the path.

« Dashed pointers go up, so the solid path above does not “know” it
has dashed children.

« Solid binary trees linked by dashed edges: virtual tree.

« “Isolated path” operations handle the exposed path.
= That’s the solid path entering the root.
« If a different path is needed:

= expose(v): make entire path from v to the root solid.

Dynamic Trees

Dynamic Trees
Virtual Tree: An Example
f
f b
T c
q) i . a
P Tk
j o O h
m n e
.. d
r t) 9
v
w i é\) u é x
y
the actual tree avirtual tree

Dynamic Trees

Dynamic Trees

11

Renato Werneck

Dynamic Trees

« Example: expose(y)

(actual tree)

Dynamic Trees

Dynamic Trees

« Example: expose(y)

= ..., make them solid, ...

(actual tree)

Dynamic Trees

Dynamic Trees

« Example: expose(y)
= Take all edges in the path to the root, ...

(actual tree)

dynamic Trees

Dynamic Trees

« Example: expose(y)

= ...make sure there is no other solid edge incident into the path.
« Uses splice operation.

z@ (actual tree)

Dynamic Trees

Exposing a Vertex

« expose(y): makes the path from y to the root solid.

« Implemented in three steps:
1. Splay within each solid tree in the path from x to root.

2. Splice each dashed edge from x to the root.
— splice replaces left solid child with dashed child;

3. Splay on x, which will become the root.

Exposing a Vertex: An Example

Dynamic Trees

« expose(y): (1) splay within each solid tree;
= Does not change the partition into solid paths.

SN

b
c
q Rt a
N
2 local splays
o o h Ea—
m n e
d
r 9

s
w u

f
1
& i
P
ig’
-
v
z% O«
v

Dynamic Trees

Dynamic Trees

12

Renato Werneck

Exposing a Vertex: An Example

« expose(y): (2) splice on all vertices from y to the root.
= Original exposed path: (qlifcba)
= New exposed path: yvutsmjgdcba)

splices

Dynamic Trees

Dynamic Trees: Splice

« Additional restructuring primitive: splice.
= Dashed child becomes solid, replaces left child.

splice(v)

o
I
SN
® ®

= Update: mincost’(z) = min{cost(z), mincost(v), mincost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

= k: number of dashed edges from x to the root t.
= Amortized costs of each pass:
1. Splay within each solid tree:
— Xx;: vertex splayed on the i-th solid tree.
— amortized cost of i-th splay: 6 ((x;) — r(x)) + 1 (Access Lemma)
- 1(x;,,) 27(x), so the sum over all steps telescopes;
— amortized cost first of pass: 6(r'(x;)-r(x,)) + k<6 logn + k.
2. Splice dashed edges:
— no rotations, no changes in potential: amortized cost is zero.
3. Splayonx:
— amortized cost is at most 6 log nn + 1.
— xends up in root, so exactly k rotations happen;
— each rotation costs one credit, but is charged two;
— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Dynamic Trees

Dynamic Trees

Exposing a Vertex: An Example

« expose(y): (3) splay on y.
= Does not change the exposed path.

global splay

dynamic Trees

Exposing a Vertex: Running Time

« Running time of expose(x):
= Proportional to initial depth of x;
« xis rotated all the way to the root;
« we just need to count the number of rotations.
= Will use the Access Lemma.
* s(x), r(x) and potential are defined as before;

« In particular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

Implementing Dynamic Tree Operations

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose v;
= find w, the rightmost vertex in the solid subtree containing v;
= splay at w and return w.
« findmin(v):
= expose v;

use mincost to walk down from v to w, the last minimum-cost
node in the solid subtree containing v;

splay at w and return w.

Dynamic Trees

13

Renato Werneck

Implementing Dynamic Tree Operations

o link(v,w):

= expose v and w (they are in different trees);

« cut(v):
= expose v;
= make p(right(v))=null and right(v)=null;

= set mincost(v) = min{cost(v), mincost(left(v))}.

Alternative Implementations

= set p(v)=w (that is, make v a middle child of w).

Dynamic Trees

« Total time per operation depends on path representation:
= Splay trees: O(log n) amortized [Sleator and Tarjan, 85].
= Balanced search tree: O(log2n) amortized [ST83].
= Locally biased search tree: O(log n) amortized [ST83].
= Globally biased search trees: O(log n) worst-case [ST83].

« Biased search trees:
= Support leaves with different “weights”.

= Some solid leaves are “heavier” because they also represent
dashed subtrees.

= Much more complicated than splay trees.

dynamic Trees

Dynamic Trees

« Motivation (online MSTs)

« Problem Definition

« A Data Structure for Dynamic Paths
« A Data Structure for Dynamic Trees

« Extensions

Extension: Adding Costs

Dynamic Trees

« addcost(v,x): adds x to the cost of all vertices in the path from
v to the root.

addcost(s,3)

Dynamic Trees

Adding Costs to Dynamic Paths

« Corresponding operation on dynamic paths:

= current representation takes linear time.

actual costs u Ve

Adding Costs to Dynamic Paths

= addcost(v,x): adds x to the cost of vertices in path containing v;

Dynamic Trees

« Better approach is to store Acost(x) instead (difference form):
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))

actual costs n Ve difference form n Ve

Dynamic Trees

14

Renato Werneck

Adding Costs to Dynamic Paths

Adding Costs to Dynamic Paths

« Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).

« Still have to implement findmin:

= Cannot store mincost(x) explicitly (addcost would be linear).

costs: 6 2 3 4 7 9 3
v, v, v, v, vy Vg v,
Dynamic Trees

costs: 6 2 3 4 7 9 3
v, v, v, v, v, Vg v,
Dynamic Trees

Adding Costs to Dynamic Paths

Adding Costs to Dynamic Paths

« Store Amin(x) = cost(x)—mincost(x) instead.
= findmin still runs in O(log n) time, addcost now constant.

« Final version:
= Store Amin(x) and Acost(x) on each node.

actual costs n vg

Dynamic Trees

Adding Costs to Dynamic Paths: Updating Fields

Adding Costs: Updating Fields

« Updating fields during rotations:

() O
rotate(v)
@ ©— @ @«
@ ® ® ©

= Acost’(v) = Acost(v) + Acost(w)

= Acost'(w) = —Acost(v)

= Acost’(b) = Acost(v) + Acost(b)

= Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}

= Amin’(v) = max{o, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}

« Updating fields during splice:

splice(v)
—_—

® ©
= Acost’(v) = Acost(v) — Acost(z)

= Acost’(u) = Acost(u) + Acost(z)
= Amin’(z) = max{o, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

 Recall that w is always the root of a solid tree.

Dynamic Trees

Dynamic Trees

Dynamic Trees

15

Renato Werneck

Adding Costs: Operations Adding Costs: Operations
« findcost(v): « addcost(v, x):
= expose v, return Acost(v). = expose v;
« findroot(v): = add x to Acost(v), subtract x from Acost(left(v))
= expose v; o link(v,w):
= find w, the rightmost vertex in the solid subtree containing v; = expose v and w (they are in different trees);
= splay at w and return w. = set p(v)=w (that is, make v a middle child of w).
« findmin(v): « cut(v):
= expose v; = expose v;
= use Acost and Amin to walk down from v to w, the last minimum- = add Acost(v) to Acost(right(v));
cost node in the solid subtree; * make p(right(v))=null and right(v)=null.
* splay at wand return w. * set Amin(v) = max {0, Amin(left(v)) — Acost(left(v))}
Dynamic Trees Dynamic Trees
Another Extension: Change Root Another Extension: Change Root
« evert(q): makes g the root of its tree « evert(q): makes g the root of its tree

= Make sure q is exposed, reverse solid path.

evert(q) evert(q)
_—
(actual trees) (actual trees) z I
Dynamic Trees Dynamic Trees
Another Extension: Change Root Other Extensions
« evert(q): makes g the root of its tree « Associate values with edges:
= In the virtual tree: reverse left-right pointers: = just interpret cost(v) as cost(v,p(v)).
« This can be done implicitly with a reverse bit. . .
— Must be stored in difference form (meaning depends on parents). + Other path queries (SuCh as length)'
; f = modify values stored in each node appropriately.
1 . b b e A ! « Free (unrooted) trees: use evert to change root.
g 2. T O .
¢ po ' ek evert(q) R ¢ By P « Subtree-related operations:
R T io : h . X
J °g o Y . ° K,;\ . = Can be implemented, but parent must have access to middle
ol i ¢ d children in constant time:
. T t
") Y g @ j « Tree must have bounded degree.
s : y . “ s o»
wd ou O N v i ou & = Approach for arbitrary trees: “ternarize” them:
z C\) % « [Goldberg, Grigoriadis and Tarjan, 1991]
), (virtual trees) v
Dynamic Trees Dynamic Trees

Dynamic Trees

