Radix Sorting

LSD radix sort

MSD radix sort
3-way radix quicksort
Suffix sorting

Reference: Chapter 13, Algorithms in Java, 3¢ Edition, Robert Sedgewick.

Princeton University + COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton.EDU/~cos226

Radix Sorting

Radix sorting.
. Specialized sorting solution for strings.
. Same ideas for bits, digits, etc.

Applications.

- Sorting strings.

. Full text indexing.

. Plagiarism detection.

. Burrows-Wheeler transform. stay funed
. Computational molecular biology.

An Application: Redundancy Detector

Longest repeated substring.
. Given a string of N characters, find the longest repeated substring.
.Exx aacaagtttacaagec
. Application: computational molecular biology.

Dumb brute force.
. Tryallindices i and j, and all match lengths k and check.
. O(W N3) time, where W is length of longest match.

k k

< > < »
< > < »

[alafcfalafofe]e]e]alcf[a]a]a]<]
1+ 1+
i j

An Application: Redundancy Detector

Longest repeated substring.

. Given a string of N characters, find the longest repeated substring.
. Exx aacaagtttacaagec

. Application: computational molecular biology.

Brute force.
. Tryall indices i and j for start of possible match, and check.
. O(W N2) time, where W is length of longest match.

_ s —

[alafefalafofefef[e]a]cf[a]ala]<]
1+ 1
i j

A Sorting Solution Suffix Sorting: Java Implementation

Suffix sort. Java implementation.
. Form N suffixes of original string. . We use Java string library functions to simplify code.
. Sort to bring longest repeated substrings together. . Could use byte array to store ASCII string, and array of pointers

into the byte array to save memory.

Diversion: String Implementation in Java String Sorting Performance

Java implementation of String.
. Immutability: use as Key in symbol table, fast substring. String Sort Suffix (sec)
. Memory for virgin string: 28 + 2N bytes (I) Worst Case Moby Dick

N = humber of strings. § estimate
1.2 million for Moby Dick. 1 probabilistic guarantee.
191 thousand for Aesop's Fables.

String Sorting

Notation.
. String = variable length sequence of characters.
. W =max # characters per string.
. N = # input strings.
. R=radix (256 for extended ASCII, 65,536 for UNICODE).

Java syntax.

. Array of strings: String[] a;

. The i string: ali]

. The d™ character of the ith string: a[i] .charAt (d)

. Strings to be sorted: a[lo], ..., a[hi]

Key Indexed Counting

Key indexed counting.
= . Count frequencies of each letter. (0™ character)

n

(d|a|b
int[] count = new int[256+1]; - <l
for (int i = L; i <= R; i++) { Gl c|2|b

char ¢ = a[i].charAt(d); 3 RS
count[c+1]++; ‘'S f|e|e

} Clll b|(a|d
frequencies o ¢|2 4

Il ble|e

Al £ (e | d

Ml b|le|d

il e | b | b

d=0; 11 ERR-AN-

Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
= . Compute cumulative frequencies.

count

V]

for (int i = 1; i < 256; i++)
count[i] += count[i-1];

cumulative counts

0
1
2
3
4
5
3
7
8
9

[y
(=)

O[O |0 |a|0|m|mio(e A
alo(ofo|(o|p|p|o|m (e (|
olo|(alalo|a|la|o|afbafb

[
[

Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
. Compute cumulative frequencies.
®» . Use cumulative frequencies to rearrange strings.

a count
(l d|a|b 0
i a(d|d 1
for (int i = L; i <= R; i++) { Pl c(a|b 2
char ¢ = a[i] .charAt(d) ; M f|a|d 3
temp [count[c]++] = a[i]; M flele 4
} s BBE 5
rearrange g d(a|d 6
Yl b(e|e 7
£ (e |d 8
Al b|le(d 9
10 BB 10
d=0; 11 ENEREE 11

Key Indexed Counting

Key indexed counting.

. Count frequencies of each letter. (0™ character)

. Compute cumulative frequencies.

= . Use cumulative frequencies to rearrange strings.

n

temp

Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
. Compute cumulative frequencies.
» . Use cumulative frequencies to rearrange strings.

temp

o BIBE 0 0 o BERE
el a (d | d 1 il a(c|e
for (int i = L; i <= R; i++) { Ec(afb 2 for (int i = L; i <= R; i++) { YAl b|ald
char ¢ = a[i].charAt(d); El £|a|d 3 char ¢ = a[i].charAt(d); 3 EKEE
temp [count[c]++] = a[i]; 'Sl fle|e 4 temp [count[c]++] = a[i]; 4 'Sl ble|d
} M b|ald 5 } W c|a|b
rearrange g djald 6 a|b rearrange ° G <2 |b
Yl ble|e 7 YAl d|(a|d
s HBEE 8 8 s NS
o HBE 9 : o HERE
il e | b | b 10 0 il £ (e | e
d=0; 11 [ERRERS 11 d =0; =) ajc|e 11 ERCNN-E
13 24
Key Indexed Counting LSD Radix Sort
Key indexed counting. Least significant digit radix sort.
. Count frequencies of each letter. (0™ character) . Ancient method used for card-sorting.
. Compute cumulative frequencies. . Consider digits from right to left:
= . Use cumulative frequencies to rearrange strings. - use key-indexed counting to STABLE sort by character
a temp h M 4
(Ml d|a|b (Ml d|a|b (Ml d|(a|b (ll a [c | e
€ Gl 2 |d[d 1 NAE 1 ARE 1 FRB W - [a|a
& 1 HEE 2 AP 2 BB 2 HRR 2 BB
for (int i = L; i <= R; i++) 2 2 RIS 3 AR W 2 [d|a 3 NP El b [|a
a[i] = temp[i - L]; g @l b|ee s+ ABRE + B W a[a(a + e
ok ¢ gl b|e|d 5 BBRE 5 BBE s NBB s BB
co ac
PY = G (2| b s ARR s ARR s BB s BB
g ¢ KGR 7 OB 7 AR 7 NER 7 FIBE
7 L d|ad s AR W b|e|a s AR s NBE
c G ¢ |b|b s BB s BB s BBE o AR
2 o BRI 10 BB 10 BB fle|e 10 AR
L0 10 ERCNEG 11 ENE-EE) 88l a (c | e ble|e Bl £ (e | e
11 bl £ [e|d

LSD Radix Sort

Least significant digit radix sort.
. Ancient method used for card-sorting.
. Consider digits from right to left:
- use key-indexed counting to STABLE sort by character

public static void 1lsd(String[] a, int lo, int hi) {
for (int d = W-1; d >= 0; d--) {
// do key-indexed counting sort on digit d

Fixed length strings (length = W)

LSD Radix Sort: Correctness

Proof 1. (left-to-right).

. If two strings differ on first character, key-
indexed sort puts them in proper relative order.

. If two strings agree on first character, stability
keeps them in proper relative order.

Proof 2. (right-to-left)
. If the characters not yet examined differ, it
doesn't matter what we do now.
. If the characters not yet examined agree, later
pass won't affect order.

now
for
ti

il

dim
tag
jot
scb
nﬁb
sky
hut
ace
bet
men
egg
few
jay
owl
Jjoy
rap
gig
wee
was
cab
wad
tap
caw
cue
fee
raw
ago
tar
jam
dug
you
and

LSD Radix Sort Correctness

Running time. ®(W(N + R)).
L 3

why doesn't it violate N log N lower bound?

Advantage. Fastest sorting method for random fixed length strings.

Disadvantages.
. Accesses memory "randomly."
« Inner loop has a lot of instructions.
. Wastes time on low-order characters.
. Doesn't work for variable-length strings.
. Not much semblance of order until very last pass.

Goal: find fast algorithm for variable length strings.

MSD Radix Sort now

for

tip

Most significant digit radix sort. dim
. Partition file into 256 pieces according §2§

to first character. sob
nob

. Recursively sort all strings that start sky

with the same character, etc. ace

bet

men

th D e9g

How to sort on d'h character? few
. . ja:

. Use key-indexed counting. e

joy

rap

gig

wee

was

cab

wad

caw

cue

fee

tap

ago

tar

du
an

aj|ce ac|e ace
a|go ag|o ago
a/nd an|d and
blet be|t bet
clab cal|b cab
claw ca|w caw
clue <cu|e cue
diim di|m dim
diug dulg dug
e gg egl|g edgqg
flor fe|w fee
flee fele TFew|
f ew To[r Ffor
g|lig gi|g gig
hiut hu[t hut
iJlk il|k 1ilIk
jlam Jjaly Jam
jlay ja|m Jay
jlot Jo|t Jot
jloy djoly oy
mien me|n men
Ti|ow no|w nob|
niocb no/b Tnow
o[wl ow|l owl

rjap ra|p rap
s|(ob skl|y sky
s ky so|b sob
t[ip talg ta

tlag ta|p Eap|
tlap ta|r ar
tlar ti|p ¢tip
w|iee wa|d wad
w as wa|s was

wjad we|e wee

MSD Radix Sort Implementation

public static void msd(String[] a, int lo, int hi) {
msd(a, lo, hi, 0);
}

private static void msd(String[] a, int lo, int hi, int d) {
if (hi <= lo) return;

// do key-indexed counting sort on digit d
int[] count = new int[256+1];

// recursively sort 255 subfiles - assumes '\0' terminated
for (int i = 0; i < 255; i++)
msd(a, L + count[i], L + count[i+l] - 1, d+1);

String Sorting Performance

String Sort Suffix (sec)
Worst Case Moby Dick

\ANG 36,000 §
W N log N T 95
W(N +R) -
W(N +R) 395
W(N +R) 6.8
R = radix. § estimate

W = max length of string. * assumes fixed length strings.
N = number of strings. 1 probabilistic guarantee.

MSD Radix Sort Analysis

Disadvantages.

. Too slow for small files.
- ASCII: 100x slower than insertion sort for N = 2
- UNICODE: 30,000x slower for N = 2

. Huge number of recursive calls on small files.

Solution: cutoff to insertion sort for small N.
. Competitive with quicksort for string keys.

Recursive Structure of MSD Radix Sort

Trie structure to describe recursive calls in MSD radix sort.

Problem: algorithm touches lots of empty nodes ala R-way tries.
. Tree can be as much as 256 times bigger than it appears!

Correspondence With Sorting Algorithms

Correspondence between trees and sorting algorithms.
. BSTs correspond to quicksort recursive partitioning structure.
. R-way fries corresponds to MSD radix sort.
. What corresponds fo ternary search fries?

3-Way Radix Quicksort

Idea 1. Use d'h character to "sort" into 3 pieces instead of 256, and
sort each piece recursively.

Idea 2. Keep all duplicates together in partitioning step.

actinian loenobite actinian now ig ace

d
for or bet
jeffrey donelrad bracteal tip dug dug
. P i il il cab
coenobite dctinian doenobite o ey G
conelrad Hracteal donelrad tag ago ago
secureness secureness qumin ggﬁ 222 :;g
cumin latedly dhariness nob cue cue
sky caw caw
chariness kblot dentesimal hut hut ee
bracteal ffrey dankerous g:s :gi g Z:
displease splease dircumflex men cab il
millwright nillwright millwright ggg B
- i i Jay Jfay Jjam
repertoire Hdepertoire repertoire owi jlot 3a
dourness dgourness dourness joy Jloy TJoly
rap am olt
centesimal southeast southeast gig ow o,
fondler flondler fondler wee wee novg
interval interval interval Z:ﬁ :.:: ;‘.Zn
wad wad T[a]
reversionary deversionary reversionary e oS sky
dilatedly dqumin secureness cue no was
inkblot dhariness dilatedly ig; :g)‘; 2‘;‘;
southeast dentesimal inkblot ago tag tag
. tar tar tar
cankerous dankerous jeffrey du tip tip
an now wee
circumflex dircumflex displease jam rap el
Partition Algorithm

Recursive Structure of MSD Radix Sort vs. 3-Way Quicksort

3-way radix quicksort collapses empty links in MSD tree.

MSD Recursion Tree

3-Way Radix Quicksort Recursion Tree

3-Way Partitioning

3-way partitioning.
. Natural way to deal with equal keys.
. Partition elements into 3 parts:
- elements between i and j equal fo partition element v
- no larger elements to left of i
- no smaller elements to right of j

equal to v greater than v

lo i J hi

Dutch national flag problem.

. Not easy to implement efficiently. (Try it!) P
. Not done in practical sorts before mid-1990s. "‘

. Incorporated into Java system sort, C gsort. \

3-Way Partitioning

Elegant solution to Dutch national flag problem.
. Partition elements into 4 parts: E
- no larger elements to left of m
- no smaller elements to right of m
- equal elements to left of p
- equal elements to right of q

less thanv___greater thanv

lo p m q hi

. Afterwards, swap equal keys into center.

All the right properties.
. Not much code.
. In-place.
. Linear if keys are all equal.
. Small overhead if no equal keys.

40

3-Way Radix Quicksort

private static void quicksortX(String a[], int lo, int hi, int d) {
if (hi - lo <= 0) return;
int i = 1lo-1, j = hi, p = lo-1, g = hi;
char v = a[hi] .charAt(d) ;
while (i < j) { repeat until pointers cross
while (a[++i].charAt(d) < v) ;
while (v < a[--j].charAt(d))
if (j == lo) break;
if (i > j) break;
exch(a, i, Jj):;

find i on left and j on right to swap

if (a[i].charAt(d) == v) { pt++; exch(a, p, i); } swap equal chars
if (a[j].charAt(d) == v) { g--; exch(a, j, q); } toleftorright
}
if (p == q) { special case for
if (v !'= '\0') quicksortX(a, lo, hi, d+1); all equal chars
return;

}

if (a[i].charAt(d) < v) i++;

for (int k = lo; k <= p; k++, j--) exch(a, k, j); swap equal ones
for (int k = hi; k >= q; k--, i++) exch(a, k, i); DPackfomiddle
quicksortX(a, lo, j, d);

if ((1i == hi) && (a[i].charAt(d) == v)) i++; sor‘r3pieces
if (v !'= '\0') quicksortX(a, j+1, i-1, d+l); recursively
quicksortX(a, i, hi, d);

41

Significance of 3-Way Partitioning

Equal keys omnipresent in applications when purpose of sort is to bring
records with equal keys together.

. Finding collinear points.

. Sort population by age.

. Remove duplicates from mailing list.

. Sort job applicants by college attended.

Typical application.

. Huge file.

- Small number of key values.

. Randomized 3-way quicksort is LINEAR time. (Try it!)

Theorem. Quicksort with 3-way partitioning is OPTIMAL.
Proof. Ties cost to entropy. Beyond scope of 226.

42

Quicksort vs. 3-Way Radix Quicksort

Quicksort.
. 2N In N string comparisons on average.

. Long keys are costly to compare if they differ only at the end, and
this is common case!

. Absolutism, absolut, absolutely, absolute.

3-way radix quicksort.
. Avoids re-comparing initial parts of the string.
. Uses just "enough” characters to resolve order.
. 2N In N character comparisons on average for random strings.
. Sub-linear sort for large W since input is of size NW.

43

String Sorting Performance

Brute W N? 36,000 §
Quicksort W N logN T 9.5
LsD * W(N +R) =
MSD W(N +R) 395
MSD with cutoff W(N +R) 6.8
3-Way Radix Quicksort W N log N * 2.8
R = radix. § estimate
W = max length of string. * fixed length strings only
N = number of strings. T probabilistic guarantee

44

Suffix Sorting: Worst Case Input

Length of longest match small.
. 3-way radix quicksort rules!

Length of longest match very long.
- 3-way radix quicksort is quadratic.
. Two copies of Moby Dick.

Can we do better?
. ©(NlogN)?
. O(N)?

Observation. Must find longest repeated

substring WHILE suffix sorting to beat N2,

Input:

abcdefghi
abcdefghiabcdefghi
bcdefghi
bcdefghiabcdefghi
cdefghi
cdefghiabcdefgh
defghi
efghiabcdefghi
efghi
fghiabcdefghi
fghi

ghiabcdefghi

fhi

hiabcdefghi

hi

iabcdefghi

1

"abcdeghiabcdefghi”

45

Suffix Sorting in N log N Time: Key Idea

0 babaaaabcbabaaaaa0 17 Obaj;aaabcbabaaaaa
1 abaaaabcbabaaaaaOb 16 aObabaaaabcbabaaaa
2 baaaabcbabaaaaaOba 15 aaOhabaaaabcbabaaa
3 aaaabcbabaaaaaObab 14 aaa(babaaaabcbabaa
4 aaabcbabaaaaaObaba 3 aaadbcbabaaaaaObab
5 aabcbabaaaaaObabaa 12 aaagaObabaaaabcbab
6 abcbabaaaaaObabaaa =) 13 aaagObabaaaabcbaba
7 bcbabaaaaaObabaaaa == 4 aaaHcbabaaaaaObaba
8 cbabaaaaaObabaaaab 5 aabdbabaaaaaObabaa
9 babaaaaaObabaaaabc 1 abagaabcbabaaaaaOb
10 abaaaaaObabaaaabcb 10 abagaaaObabaaaabcb
11 baaaaaObabaaaabcba 6 abcHabaaaaaObabaaa
12 aaaaaObabaaaabcbab 2 baaaabcbabaaaaaOba
13 aaaaObabaaaabcbaba 11 baagaaObabaaaabcba
14 aaaObabaaaabcbabaa 0 babgdaaabcbabaaaaal
15 aaObabaaaabcbabaaa 9 babgaaaaObabaaaabc
16 aObabaaaabcbabaaaa 7 bcbabaaaaalObabaaaa
17 Obabaaaabcbabaaaaa 8 cbaq:aaaaObabaaaab

Input: "babaaaabcbabaaaaa"

46

Suffix Sorting in N log N Time

Manber's MSD algorithm.

. Phase 0: sort on first character using key-indexed sorting.
. Phase n: given list of suffixes sorted on first n characters, create

list of suffixes sorted on first 2n characters

. Finishes after Ig N phases.

Manber's LSD algorithm.
. Same idea but go from right to left.
. O(N log N) guaranteed running time.
. O(N) extra space.

47

String Sorting Performance

String Sort Suffix Sort (seconds)

Worst Case Moby Dick

AesopAesop

W N2 36,000 § 3,990
W N log Nt 95 167
W(N + R) - -
W(N +R) 395 memory
W(N +R) 6.8 162
W N log N T 238 400
N log N 17

R = radix. § estimate
W = max length of string. * fixed length strings only
N = number of strings. 1 probabilistic guarantee

¥ suffix sorting only

