
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Radix Sorting

Reference: Chapter 13, Algorithms in Java, 3rd Edition, Robert Sedgewick.

LSD radix sort

MSD radix sort

3-way radix quicksort

Suffix sorting

2

Radix Sorting

Radix sorting.
� Specialized sorting solution for strings.
� Same ideas for bits, digits, etc.

Applications.
� Sorting strings.
� Full text indexing.
� Plagiarism detection.
� Burrows-Wheeler transform. stay tuned
� Computational molecular biology.

3

An Application: Redundancy Detector

Longest repeated substring.
� Given a string of N characters, find the longest repeated substring.
� Ex: a a c a a g t t t a c a a g c
� Application: computational molecular biology.

Dumb brute force.
� Try all indices i and j, and all match lengths k and check.
� O(W N3) time, where W is length of longest match.

a a c a a g t t t a c a a g c

i j

k k

4

An Application: Redundancy Detector

Longest repeated substring.
� Given a string of N characters, find the longest repeated substring.
� Ex: a a c a a g t t t a c a a g c
� Application: computational molecular biology.

Brute force.
� Try all indices i and j for start of possible match, and check.
� O(W N2) time, where W is length of longest match.

a a c a a g t t t a c a a g c

i j

5

A Sorting Solution

Suffix sort.
� Form N suffixes of original string.
� Sort to bring longest repeated substrings together.

a a c a a g t t t a c a a g c
a c a a g t t t a c a a g c
c a a g t t t a c a a g c
a a g t t t a c a a g c
a g t t t a c a a g c
g t t t a c a a g c
t t t a c a a g c
t t a c a a g c
t a c a a g c
a c a a g c
c a a g c
a a g c
a g c
g c
c

a a c a a g t t t a c a a g c

a c a a g t t t a c a a g c

c a a g t t t a c a a g c

a a g t t t a c a a g c

a g t t t a c a a g c

g t t t a c a a g c

t t t a c a a g c
t t a c a a g c
t a c a a g c

a c a a g c

c a a g c

a a g c

a g c

g c

c

6

Suffix Sorting: Java Implementation

Java implementation.
� We use Java String library functions to simplify code.
� Could use byte array to store ASCII string, and array of pointers

into the byte array to save memory.

public class SuffixSorter {
public static void main(String[] args) {

In stdin = new In();
String s = stdin.readAll();
int N = s.length();
String[] suffixes = new String[N];
for (int i = 0; i < N; i++)

suffixes[i] = s.substring(i, N);
Arrays.sort(suffixes);
findLongestMatch(suffixes);

}
}

read input

create suffixes
(linear time)

sort and find
longest match
(bottleneck)

7

Diversion: String Implementation in Java

Java implementation of String.
� Immutability: use as Key in symbol table, fast substring.
� Memory for virgin string: 28 + 2N bytes (!)

public final class String implements Comparable {
private char[] value; // characters
private int offset; // index of first char into array
private int count; // length of string
private int hash; // cache of hashCode

private String(int offset, int count, char[] value) {
this.offset = offset;
this.count = count;
this.value = value;

}
public String substring(int from, int to) {

return new String(offset + from, to - from, value);
}
. . .

}

8

String Sorting Performance

N = number of strings.
1.2 million for Moby Dick.
191 thousand for Aesop's Fables.

§ estimate
† probabilistic guarantee.

Quicksort W N log N † 9.5

Worst Case Moby Dick

Brute W N2 36,000 §

Suffix (sec)String Sort

9

String Sorting

Notation.
� String = variable length sequence of characters.
� W = max # characters per string.
� N = # input strings.
� R = radix (256 for extended ASCII, 65,536 for UNICODE).

Java syntax.
� Array of strings: String[] a;
� The ith string: a[i]
� The dth character of the ith string: a[i].charAt(d)
� Strings to be sorted: a[lo], ..., a[hi]

10

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

0
1
2
3
4
5
6
7
8
9
10
11

a count
a 0
b 2
c 3
d 1
e 2
f 1
g 3

d = 0;

int[] count = new int[256+1];
for (int i = L; i <= R; i++) {

char c = a[i].charAt(d);
count[c+1]++;

}
frequencies

11

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)
� Compute cumulative frequencies.

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

a 0
b 2
c 5
d 6
e 8
f 9

0
1
2
3
4
5
6
7
8
9
10
11

a count

g

a 0
b 2
c 3
d 1
e 2
f 1
g 3 11

for (int i = 1; i < 256; i++)
count[i] += count[i-1];

cumulative counts

12

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)
� Compute cumulative frequencies.
� Use cumulative frequencies to rearrange strings.

a 0
b 2
c 5
d 6
e 8
f 9

a d d
a c e
b a d
b e e
b e d
c a b
d a b
d a d
e b b
f a d
f e e
f e d

0
1
2
3
4
5
6
7
8
9
10
11

count temp

g

a 0
b 2
c 3
d 1
e 2
f 1
g 3

d = 0;

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

0
1
2
3
4
5
6
7
8
9
10
11

a

11

for (int i = L; i <= R; i++) {
char c = a[i].charAt(d);
temp[count[c]++] = a[i];

}
rearrange

13

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)
� Compute cumulative frequencies.
� Use cumulative frequencies to rearrange strings.

a 0
b 2
c 5
d 6
e 8
f 9

a d d
a c e
b a d
b e e
b e d
c a b
d a b
d a d
e b b
f a d
f e e
f e d

0
1
2
3
4
5
6
7
8
9
10
11

count temp

g

a 0
b 2
c 3
d 1
e 2
f 1
g 3

d = 0;

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

0
1
2
3
4
5
6
7
8
9
10
11

a

7

11

for (int i = L; i <= R; i++) {
char c = a[i].charAt(d);
temp[count[c]++] = a[i];

}
rearrange

24

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)
� Compute cumulative frequencies.
� Use cumulative frequencies to rearrange strings.

a 1
b 5
c 6
d 8
e 9
f 12

a d d
a c e
b a d
b e e
b e d
c a b
d a b
d a d
e b b
f a d
f e e
f e d

0
1
2
3
4
5
6
7
8
9
10
11

count temp

g 11

a 0
b 2
c 3
d 1
e 2
f 1
g 3

d = 0;

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

0
1
2
3
4
5
6
7
8
9
10
11

a
2

for (int i = L; i <= R; i++) {
char c = a[i].charAt(d);
temp[count[c]++] = a[i];

}
rearrange

25

Key Indexed Counting

Key indexed counting.
� Count frequencies of each letter. (0th character)
� Compute cumulative frequencies.
� Use cumulative frequencies to rearrange strings.

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

a 2
b 5
c 6
d 8
e 9
f 12

0
1
2
3
4
5
6
7
8
9
10
11

a d d
a c e
b a d
b e e
b e d
c a b
d a b
d a d
e b b
f a d
f e e
f e d

0
1
2
3
4
5
6
7
8
9
10
11

a count temp

g

a 0
b 2
c 3
d 1
e 2
f 1
g 3 11

for (int i = L; i <= R; i++)
a[i] = temp[i - L];

copy back

27

LSD Radix Sort

Least significant digit radix sort.
� Ancient method used for card-sorting.
� Consider digits from right to left:

– use key-indexed counting to STABLE sort by character

d a b
a d d
c a b
f a d
f e e
b a d
d a d
b e e
f e d
b e d
e b b
a c e

0
1
2
3
4
5
6
7
8
9
10
11

d a b
c a b
e b b
a d d
f a d
b a d
d a d
f e d
b e d
f e e
b e e
a c e

0
1
2
3
4
5
6
7
8
9
10
11

d a b
c a b
f a d
b a d
d a d
e b b
a c e
a d d
f e d
b e d
f e e
b e e

0
1
2
3
4
5
6
7
8
9
10
11

a c e
a d d
b a d
b e d
b e e
c a b
d a b
d a d
e b b
f a d
f e d
f e e

0
1
2
3
4
5
6
7
8
9
10
11

28

LSD Radix Sort

Least significant digit radix sort.
� Ancient method used for card-sorting.
� Consider digits from right to left:

– use key-indexed counting to STABLE sort by character

Fixed length strings (length = W)

public static void lsd(String[] a, int lo, int hi) {
for (int d = W-1; d >= 0; d--) {

// do key-indexed counting sort on digit d
...

}
}

29

LSD Radix Sort: Correctness

Proof 1. (left-to-right).
� If two strings differ on first character, key-

indexed sort puts them in proper relative order.
� If two strings agree on first character, stability

keeps them in proper relative order.

Proof 2. (right-to-left)
� If the characters not yet examined differ, it

doesn't matter what we do now.
� If the characters not yet examined agree, later

pass won't affect order.

30

LSD Radix Sort Correctness

Running time. �(W(N + R)).

Advantage. Fastest sorting method for random fixed length strings.

Disadvantages.
� Accesses memory "randomly."
� Inner loop has a lot of instructions.
� Wastes time on low-order characters.
� Doesn't work for variable-length strings.
� Not much semblance of order until very last pass.

Goal: find fast algorithm for variable length strings.

why doesn't it violate N log N lower bound?

31

Most significant digit radix sort.
� Partition file into 256 pieces according

to first character.
� Recursively sort all strings that start

with the same character, etc.

How to sort on dth character?
� Use key-indexed counting.

MSD Radix Sort

32

MSD Radix Sort Implementation

public static void msd(String[] a, int lo, int hi) {
msd(a, lo, hi, 0);

}
private static void msd(String[] a, int lo, int hi, int d) {

if (hi <= lo) return;
// do key-indexed counting sort on digit d
int[] count = new int[256+1];
...
// recursively sort 255 subfiles – assumes '\0' terminated
for (int i = 0; i < 255; i++)

msd(a, L + count[i], L + count[i+1] - 1, d+1);
}

33

String Sorting Performance

R = radix.
W = max length of string.
N = number of strings.

§ estimate
* assumes fixed length strings.
† probabilistic guarantee.

Quicksort
LSD *
MSD

MSD with cutoff

W N log N †

W(N + R)
W(N + R)
W(N + R)

9.5
-

395
6.8

Worst Case Moby Dick

Brute W N2 36,000 §

Suffix (sec)String Sort

34

MSD Radix Sort Analysis

Disadvantages.
� Too slow for small files.

– ASCII: 100x slower than insertion sort for N = 2
– UNICODE: 30,000x slower for N = 2

� Huge number of recursive calls on small files.

Solution: cutoff to insertion sort for small N.
� Competitive with quicksort for string keys.

35

Recursive Structure of MSD Radix Sort

Trie structure to describe recursive calls in MSD radix sort.

Problem: algorithm touches lots of empty nodes ala R-way tries.
� Tree can be as much as 256 times bigger than it appears!

36

Correspondence With Sorting Algorithms

Correspondence between trees and sorting algorithms.
� BSTs correspond to quicksort recursive partitioning structure.
� R-way tries corresponds to MSD radix sort.
� What corresponds to ternary search tries?

s

hby the

e

shells

e

shorel

sea sells

37
Partition Algorithm

3-Way Radix Quicksort

Idea 1. Use dth character to "sort" into 3 pieces instead of 256, and
sort each piece recursively.
Idea 2. Keep all duplicates together in partitioning step.

38

Recursive Structure of MSD Radix Sort vs. 3-Way Quicksort

3-way radix quicksort collapses empty links in MSD tree.

MSD Recursion Tree

3-Way Radix Quicksort Recursion Tree

39

3-Way Partitioning

3-way partitioning.
� Natural way to deal with equal keys.
� Partition elements into 3 parts:

– elements between i and j equal to partition element v
– no larger elements to left of i
– no smaller elements to right of j

Dutch national flag problem.
� Not easy to implement efficiently. (Try it!)
� Not done in practical sorts before mid-1990s.
� Incorporated into Java system sort, C qsort.

less than v equal to v greater than v

i jlo hi

40

3-Way Partitioning

Elegant solution to Dutch national flag problem.
� Partition elements into 4 parts:

– no larger elements to left of m
– no smaller elements to right of m
– equal elements to left of p
– equal elements to right of q

� Afterwards, swap equal keys into center.

All the right properties.
� Not much code.
� In-place.
� Linear if keys are all equal.
� Small overhead if no equal keys.

equal to v
mlo hi

less than v greater than v equal to v
qp

41

private static void quicksortX(String a[], int lo, int hi, int d) {
if (hi - lo <= 0) return;
int i = lo-1, j = hi, p = lo-1, q = hi;
char v = a[hi].charAt(d);
while (i < j) {

while (a[++i].charAt(d) < v) ;
while (v < a[--j].charAt(d))

if (j == lo) break;
if (i > j) break;
exch(a, i, j);
if (a[i].charAt(d) == v) { p++; exch(a, p, i); }
if (a[j].charAt(d) == v) { q--; exch(a, j, q); }

}
if (p == q) {

if (v != '\0') quicksortX(a, lo, hi, d+1);
return;

}
if (a[i].charAt(d) < v) i++;
for (int k = lo; k <= p; k++, j--) exch(a, k, j);
for (int k = hi; k >= q; k--, i++) exch(a, k, i);
quicksortX(a, lo, j, d);
if ((i == hi) && (a[i].charAt(d) == v)) i++;
if (v != '\0') quicksortX(a, j+1, i-1, d+1);
quicksortX(a, i, hi, d);

}

swap equal chars
to left or right

swap equal ones
back to middle

3-Way Radix Quicksort

repeat until pointers cross

sort 3 pieces
recursively

find i on left and j on right to swap

special case for
all equal chars

42

Significance of 3-Way Partitioning

Equal keys omnipresent in applications when purpose of sort is to bring
records with equal keys together.

� Finding collinear points.
� Sort population by age.
� Remove duplicates from mailing list.
� Sort job applicants by college attended.

Typical application.
� Huge file.
� Small number of key values.
� Randomized 3-way quicksort is LINEAR time. (Try it!)

Theorem. Quicksort with 3-way partitioning is OPTIMAL.
Proof. Ties cost to entropy. Beyond scope of 226.

43

Quicksort vs. 3-Way Radix Quicksort

Quicksort.
� 2N ln N string comparisons on average.
� Long keys are costly to compare if they differ only at the end, and

this is common case!
� Absolutism, absolut, absolutely, absolute.

3-way radix quicksort.
� Avoids re-comparing initial parts of the string.
� Uses just "enough" characters to resolve order.
� 2 N ln N character comparisons on average for random strings.
� Sub-linear sort for large W since input is of size NW.

44

String Sorting Performance

R = radix.
W = max length of string.
N = number of strings.

§ estimate
* fixed length strings only
† probabilistic guarantee

Quicksort
LSD *
MSD

MSD with cutoff

W N log N †

W(N + R)
W(N + R)
W(N + R)

9.5
-

395
6.8

Worst Case Moby Dick

Brute W N2 36,000 §

3-Way Radix Quicksort W N log N † 2.8

Suffix SortString Sort

45

Suffix Sorting: Worst Case Input

Input: "abcdeghiabcdefghi"

abcdefghi
abcdefghiabcdefghi
bcdefghi
bcdefghiabcdefghi
cdefghi
cdefghiabcdefgh
defghi
efghiabcdefghi
efghi
fghiabcdefghi
fghi
ghiabcdefghi
fhi
hiabcdefghi
hi
iabcdefghi
i

Length of longest match small.
� 3-way radix quicksort rules!

Length of longest match very long.
� 3-way radix quicksort is quadratic.
� Two copies of Moby Dick.

Can we do better?
� �(N log N) ?
� �(N) ?

Observation. Must find longest repeated
substring WHILE suffix sorting to beat N2.

46

Suffix Sorting in N log N Time: Key Idea

0 babaaaabcbabaaaaa0
1 abaaaabcbabaaaaa0b
2 baaaabcbabaaaaa0ba
3 aaaabcbabaaaaa0bab
4 aaabcbabaaaaa0baba
5 aabcbabaaaaa0babaa
6 abcbabaaaaa0babaaa
7 bcbabaaaaa0babaaaa
8 cbabaaaaa0babaaaab
9 babaaaaa0babaaaabc

10 abaaaaa0babaaaabcb
11 baaaaa0babaaaabcba
12 aaaaa0babaaaabcbab
13 aaaa0babaaaabcbaba
14 aaa0babaaaabcbabaa
15 aa0babaaaabcbabaaa
16 a0babaaaabcbabaaaa
17 0babaaaabcbabaaaaa

17 0babaaaabcbabaaaaa
16 a0babaaaabcbabaaaa
15 aa0babaaaabcbabaaa
14 aaa0babaaaabcbabaa
3 aaaabcbabaaaaa0bab

12 aaaaa0babaaaabcbab
13 aaaa0babaaaabcbaba
4 aaabcbabaaaaa0baba
5 aabcbabaaaaa0babaa
1 abaaaabcbabaaaaa0b

10 abaaaaa0babaaaabcb
6 abcbabaaaaa0babaaa
2 baaaabcbabaaaaa0ba

11 baaaaa0babaaaabcba
0 babaaaabcbabaaaaa0
9 babaaaaa0babaaaabc
7 bcbabaaaaa0babaaaa
8 cbabaaaaa0babaaaab

Input: "babaaaabcbabaaaaa"

47

Suffix Sorting in N log N Time

Manber's MSD algorithm.
� Phase 0: sort on first character using key-indexed sorting.
� Phase n: given list of suffixes sorted on first n characters, create

list of suffixes sorted on first 2n characters
� Finishes after lg N phases.

Manber's LSD algorithm.
� Same idea but go from right to left.
� O(N log N) guaranteed running time.
� O(N) extra space.

48

String Sorting Performance

§ estimate
* fixed length strings only
† probabilistic guarantee
‡ suffix sorting only

Quicksort
LSD *
MSD

MSD with cutoff

W N log N †

W(N + R)
W(N + R)
W(N + R)

9.5
-

395
6.8

Worst Case Moby Dick

Brute W N2 36,000 §

3-Way Radix Quicksort
Manber ‡

W N log N †

N log N
2.8
17

Suffix Sort (seconds)String Sort

167
-

memory
162

3,990 §

400
8.5

AesopAesop

R = radix.
W = max length of string.
N = number of strings.

