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Radix Sorting

Radix sorting.
. Specialized sorting solution for strings.
. Same ideas for bits, digits, etc.

Applications.

- Sorting strings.

. Full text indexing.

. Plagiarism detection.

. Burrows-Wheeler transform. stay funed
. Computational molecular biology.

An Application: Redundancy Detector

Longest repeated substring.
. Given a string of N characters, find the longest repeated substring.
.Exx aacaagtttacaagec
. Application: computational molecular biology.

Dumb brute force.
. Tryallindices i and j, and all match lengths k and check.
. O(W N3) time, where W is length of longest match.
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An Application: Redundancy Detector

Longest repeated substring.

. Given a string of N characters, find the longest repeated substring.
. Exx aacaagtttacaagec

. Application: computational molecular biology.

Brute force.
. Tryall indices i and j for start of possible match, and check.
. O(W N2) time, where W is length of longest match.
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A Sorting Solution Suffix Sorting: Java Implementation

Suffix sort. Java implementation.
. Form N suffixes of original string. . We use Java string library functions to simplify code.
. Sort to bring longest repeated substrings together. . Could use byte array to store ASCII string, and array of pointers

into the byte array to save memory.

Diversion: String Implementation in Java String Sorting Performance

Java implementation of String.
. Immutability: use as Key in symbol table, fast substring. String Sort Suffix (sec)
. Memory for virgin string: 28 + 2N bytes (I) Worst Case Moby Dick

N = humber of strings. § estimate
1.2 million for Moby Dick. 1 probabilistic guarantee.
191 thousand for Aesop's Fables.




String Sorting

Notation.
. String = variable length sequence of characters.
. W =max # characters per string.
. N = # input strings.
. R=radix (256 for extended ASCII, 65,536 for UNICODE).

Java syntax.

. Array of strings: String[] a;

. The i string: ali]

. The d™ character of the ith string: a[i] .charAt (d)

. Strings to be sorted: a[lo], ..., a[hi]

Key Indexed Counting

Key indexed counting.
= . Count frequencies of each letter. (0™ character)
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Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
= . Compute cumulative frequencies.

count
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for (int i = 1; i < 256; i++)
count[i] += count[i-1];

cumulative counts

0
1
2
3
4
5
3
7
8
9

[y
(=)

O[O |0 |a|0|m|mio(e A
alo(ofo|(o|p|p|o|m (e (|
olo|(alalo|a|la|o|afbafb

[
[

Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
. Compute cumulative frequencies.
®» . Use cumulative frequencies to rearrange strings.
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Key Indexed Counting

Key indexed counting.

. Count frequencies of each letter. (0™ character)

. Compute cumulative frequencies.

= . Use cumulative frequencies to rearrange strings.

n
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Key Indexed Counting

Key indexed counting.
. Count frequencies of each letter. (0™ character)
. Compute cumulative frequencies.
» . Use cumulative frequencies to rearrange strings.
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Key Indexed Counting LSD Radix Sort
Key indexed counting. Least significant digit radix sort.
. Count frequencies of each letter. (0™ character) . Ancient method used for card-sorting.
. Compute cumulative frequencies. . Consider digits from right to left:
= . Use cumulative frequencies to rearrange strings. - use key-indexed counting to STABLE sort by character
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LSD Radix Sort

Least significant digit radix sort.
. Ancient method used for card-sorting.
. Consider digits from right to left:
- use key-indexed counting to STABLE sort by character

public static void 1lsd(String[] a, int lo, int hi) {
for (int d = W-1; d >= 0; d--) {
// do key-indexed counting sort on digit d

Fixed length strings (length = W)

LSD Radix Sort: Correctness

Proof 1. (left-to-right).

. If two strings differ on first character, key-
indexed sort puts them in proper relative order.

. If two strings agree on first character, stability
keeps them in proper relative order.

Proof 2. (right-to-left)
. If the characters not yet examined differ, it
doesn't matter what we do now.
. If the characters not yet examined agree, later
pass won't affect order.
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LSD Radix Sort Correctness

Running time. ®(W(N + R)).
L 3

why doesn't it violate N log N lower bound?

Advantage. Fastest sorting method for random fixed length strings.

Disadvantages.
. Accesses memory "randomly."
« Inner loop has a lot of instructions.
. Wastes time on low-order characters.
. Doesn't work for variable-length strings.
. Not much semblance of order until very last pass.

Goal: find fast algorithm for variable length strings.
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MSD Radix Sort Implementation

public static void msd(String[] a, int lo, int hi) {
msd(a, lo, hi, 0);
}

private static void msd(String[] a, int lo, int hi, int d) {
if (hi <= lo) return;

// do key-indexed counting sort on digit d
int[] count = new int[256+1];

// recursively sort 255 subfiles - assumes '\0' terminated
for (int i = 0; i < 255; i++)
msd(a, L + count[i], L + count[i+l] - 1, d+1);

String Sorting Performance

String Sort Suffix (sec)
Worst Case Moby Dick

\ANG 36,000 §
W N log N T 95
W(N +R) -
W(N +R) 395
W(N +R) 6.8
R = radix. § estimate

W = max length of string. * assumes fixed length strings.
N = number of strings. 1 probabilistic guarantee.

MSD Radix Sort Analysis

Disadvantages.

. Too slow for small files.
- ASCII: 100x slower than insertion sort for N = 2
- UNICODE: 30,000x slower for N = 2

. Huge number of recursive calls on small files.

Solution: cutoff to insertion sort for small N.
. Competitive with quicksort for string keys.

Recursive Structure of MSD Radix Sort

Trie structure to describe recursive calls in MSD radix sort.

Problem: algorithm touches lots of empty nodes ala R-way tries.
. Tree can be as much as 256 times bigger than it appears!




Correspondence With Sorting Algorithms

Correspondence between trees and sorting algorithms.
. BSTs correspond to quicksort recursive partitioning structure.
. R-way fries corresponds to MSD radix sort.
. What corresponds fo ternary search fries?

3-Way Radix Quicksort

Idea 1. Use d'h character to "sort" into 3 pieces instead of 256, and
sort each piece recursively.

Idea 2. Keep all duplicates together in partitioning step.
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Recursive Structure of MSD Radix Sort vs. 3-Way Quicksort

3-way radix quicksort collapses empty links in MSD tree.

MSD Recursion Tree

3-Way Radix Quicksort Recursion Tree

3-Way Partitioning

3-way partitioning.
. Natural way to deal with equal keys.
. Partition elements into 3 parts:
- elements between i and j equal fo partition element v
- no larger elements to left of i
- no smaller elements to right of j

equal to v greater than v

lo i J hi

Dutch national flag problem.

. Not easy to implement efficiently. (Try it!) P
. Not done in practical sorts before mid-1990s. "‘

. Incorporated into Java system sort, C gsort. \




3-Way Partitioning

Elegant solution to Dutch national flag problem.
. Partition elements into 4 parts: E
- no larger elements to left of m
- no smaller elements to right of m
- equal elements to left of p
- equal elements to right of q

less thanv___greater thanv

lo p m q hi

. Afterwards, swap equal keys into center.

All the right properties.
. Not much code.
. In-place.
. Linear if keys are all equal.
. Small overhead if no equal keys.
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3-Way Radix Quicksort

private static void quicksortX(String a[], int lo, int hi, int d) {
if (hi - lo <= 0) return;
int i = 1lo-1, j = hi, p = lo-1, g = hi;
char v = a[hi] .charAt(d) ;
while (i < j) { repeat until pointers cross
while (a[++i].charAt(d) < v) ;
while (v < a[--j].charAt(d))
if (j == lo) break;
if (i > j) break;
exch(a, i, Jj):;

find i on left and j on right to swap

if (a[i].charAt(d) == v) { pt++; exch(a, p, i); } swap equal chars
if (a[j].charAt(d) == v) { g--; exch(a, j, q); } toleftorright
}
if (p == q) { special case for
if (v !'= '\0') quicksortX(a, lo, hi, d+1); all equal chars
return;

}

if (a[i].charAt(d) < v) i++;

for (int k = lo; k <= p; k++, j--) exch(a, k, j); swap equal ones
for (int k = hi; k >= q; k--, i++) exch(a, k, i);  DPackfomiddle
quicksortX(a, lo, j, d);

if ((1i == hi) && (a[i].charAt(d) == v)) i++; sor‘r3pieces
if (v !'= '\0') quicksortX(a, j+1, i-1, d+l); recursively
quicksortX(a, i, hi, d);
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Significance of 3-Way Partitioning

Equal keys omnipresent in applications when purpose of sort is to bring
records with equal keys together.

. Finding collinear points.

. Sort population by age.

. Remove duplicates from mailing list.

. Sort job applicants by college attended.

Typical application.

. Huge file.

- Small number of key values.

. Randomized 3-way quicksort is LINEAR time. (Try it!)

Theorem. Quicksort with 3-way partitioning is OPTIMAL.
Proof. Ties cost to entropy. Beyond scope of 226.
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Quicksort vs. 3-Way Radix Quicksort

Quicksort.
. 2N In N string comparisons on average.

. Long keys are costly to compare if they differ only at the end, and
this is common case!

. Absolutism, absolut, absolutely, absolute.

3-way radix quicksort.
. Avoids re-comparing initial parts of the string.
. Uses just "enough” characters to resolve order.
. 2N In N character comparisons on average for random strings.
. Sub-linear sort for large W since input is of size NW.
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String Sorting Performance

Brute W N? 36,000 §
Quicksort W N logN T 9.5
LsD * W(N +R) =
MSD W(N +R) 395
MSD with cutoff W(N +R) 6.8
3-Way Radix Quicksort W N log N * 2.8
R = radix. § estimate
W = max length of string. * fixed length strings only
N = number of strings. T probabilistic guarantee
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Suffix Sorting: Worst Case Input

Length of longest match small.
. 3-way radix quicksort rules!

Length of longest match very long.
- 3-way radix quicksort is quadratic.
. Two copies of Moby Dick.

Can we do better?
. ©(NlogN)?
. O(N)?

Observation. Must find longest repeated

substring WHILE suffix sorting to beat N2,

Input:

abcdefghi
abcdefghiabcdefghi
bcdefghi
bcdefghiabcdefghi
cdefghi
cdefghiabcdefgh
defghi
efghiabcdefghi
efghi
fghiabcdefghi
fghi

ghiabcdefghi

fhi

hiabcdefghi

hi

iabcdefghi

1

"abcdeghiabcdefghi”
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Suffix Sorting in N log N Time: Key Idea

0 babaaaabcbabaaaaa0 17 Obaj;aaabcbabaaaaa
1 abaaaabcbabaaaaaOb 16 aObabaaaabcbabaaaa
2 baaaabcbabaaaaaOba 15 aaOhabaaaabcbabaaa
3 aaaabcbabaaaaaObab 14 aaa(babaaaabcbabaa
4 aaabcbabaaaaaObaba 3 aaadbcbabaaaaaObab
5 aabcbabaaaaaObabaa 12 aaagaObabaaaabcbab
6 abcbabaaaaaObabaaa =) 13 aaagObabaaaabcbaba
7 bcbabaaaaaObabaaaa == 4 aaaHcbabaaaaaObaba
8 cbabaaaaaObabaaaab 5 aabdbabaaaaaObabaa
9 babaaaaaObabaaaabc 1 abagaabcbabaaaaaOb
10 abaaaaaObabaaaabcb 10 abagaaaObabaaaabcb
11 baaaaaObabaaaabcba 6 abcHabaaaaaObabaaa
12 aaaaaObabaaaabcbab 2 baaaabcbabaaaaaOba
13 aaaaObabaaaabcbaba 11 baagaaObabaaaabcba
14 aaaObabaaaabcbabaa 0 babgdaaabcbabaaaaal
15 aaObabaaaabcbabaaa 9 babgaaaaObabaaaabc
16 aObabaaaabcbabaaaa 7 bcbabaaaaalObabaaaa
17 Obabaaaabcbabaaaaa 8 cbaq:aaaaObabaaaab

Input: "babaaaabcbabaaaaa"
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Suffix Sorting in N log N Time

Manber's MSD algorithm.

. Phase 0: sort on first character using key-indexed sorting.
. Phase n: given list of suffixes sorted on first n characters, create

list of suffixes sorted on first 2n characters

. Finishes after Ig N phases.

Manber's LSD algorithm.
. Same idea but go from right to left.
. O(N log N) guaranteed running time.
. O(N) extra space.

47




String Sorting Performance

String Sort Suffix Sort (seconds)

Worst Case Moby Dick

AesopAesop

W N2 36,000 § 3,990
W N log Nt 95 167
W(N + R) - -
W(N +R) 395 memory
W(N +R) 6.8 162
W N log N T 238 400
N log N 17

R = radix. § estimate
W = max length of string. * fixed length strings only
N = number of strings. 1 probabilistic guarantee

¥ suffix sorting only




