
IA-32 Intel® Architecture
Software Developer’s

Manual

Volume 2:
Instruction Set Reference

NOTE: The IA-32 Intel Architecture Software Developer’s Manual
consists of three volumes: Basic Architecture, Order Number 245470-012;

Instruction Set Reference, Order Number 245471-012; and the System
Programming Guide, Order Number 245472-012.

Please refer to all three volumes when evaluating your design needs.

2003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or
errors known as errata. Current characterized errata are available on request.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium
are trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997 - 2003 Intel Corporation

CONTENTS
PAGE

CHAPTER 1
ABOUT THIS MANUAL
1.1. IA-32 PROCESSORS COVERED IN THIS MANUAL . 1-1
1.2. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE SOFTWARE

DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET REFERENCE 1-2
1.3. NOTATIONAL CONVENTIONS. 1-2
1.3.1. Bit and Byte Order .1-2
1.3.2. Reserved Bits and Software Compatibility .1-3
1.3.3. Instruction Operands .1-4
1.3.4. Hexadecimal and Binary Numbers .1-4
1.3.5. Segmented Addressing .1-4
1.3.6. Exceptions. .1-5
1.4. RELATED LITERATURE . 1-6

CHAPTER 2
INSTRUCTION FORMAT
2.1. GENERAL INSTRUCTION FORMAT . 2-1
2.2. INSTRUCTION PREFIXES . 2-1
2.3. OPCODE . 2-3
2.4. MODR/M AND SIB BYTES . 2-3
2.5. DISPLACEMENT AND IMMEDIATE BYTES. 2-4
2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB BYTES. 2-4
3

CHAPTER 3
INSTRUCTION SET REFERENCE
3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES 3-1
3.1.1. Instruction Format .3-1
3.1.1.1. Opcode Column .3-2
3.1.1.2. Instruction Column .3-3
3.1.1.3. Description Column .3-5
3.1.1.4. Description .3-6
3.1.2. Operation. .3-6
3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents .3-9
3.1.3.1. The Intrinsics API .3-10
3.1.3.2. MMX™ Technology Intrinsics .3-10
3.1.3.3. SSE and SSE2 Intrinsics .3-10
3.1.4. Flags Affected .3-12
3.1.5. FPU Flags Affected .3-12
3.1.6. Protected Mode Exceptions. .3-12
3.1.7. Real-Address Mode Exceptions .3-14
3.1.8. Virtual-8086 Mode Exceptions. .3-14
3.1.9. Floating-Point Exceptions .3-14
3.1.10. SIMD Floating-Point Exceptions .3-14
3.2. INSTRUCTION REFERENCE . 3-15

AAA—ASCII Adjust After Addition. .3-16
AAD—ASCII Adjust AX Before Division .3-17
AAM—ASCII Adjust AX After Multiply .3-18
AAS—ASCII Adjust AL After Subtraction .3-19

CONTENTS

PAGE

ADC—Add with Carry .3-20
ADD—Add. .3-22
ADDPD—Add Packed Double-Precision Floating-Point Values3-24
ADDPS—Add Packed Single-Precision Floating-Point Values3-26
ADDSD—Add Scalar Double-Precision Floating-Point Values3-28
ADDSS—Add Scalar Single-Precision Floating-Point Values.3-30
AND—Logical AND .3-32
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-

Point Values. .3-34
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point

Values .3-36
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision

Floating-Point Values. .3-38
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-

Point Values. .3-40
ARPL—Adjust RPL Field of Segment Selector .3-42
BOUND—Check Array Index Against Bounds .3-44
BSF—Bit Scan Forward .3-46
BSR—Bit Scan Reverse .3-48
BSWAP—Byte Swap. .3-50
BT—Bit Test .3-51
4

BTC—Bit Test and Complement .3-53
BTR—Bit Test and Reset .3-55
BTS—Bit Test and Set .3-57
CALL—Call Procedure .3-59
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.3-70
CDQ—Convert Double to Quad .3-71
CLC—Clear Carry Flag .3-72
CLD—Clear Direction Flag .3-73
CLFLUSH—Flush Cache Line. .3-74
CLI — Clear Interrupt Flag .3-76
CLTS—Clear Task-Switched Flag in CR0. .3-79
CMC—Complement Carry Flag. .3-80
CMOVcc—Conditional Move. .3-81
CMP—Compare Two Operands .3-85
CMPPD—Compare Packed Double-Precision Floating-Point Values.3-87
CMPPS—Compare Packed Single-Precision Floating-Point Values 3-92
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands 3-96
CMPSD—Compare Scalar Double-Precision Floating-Point Values 3-99
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-103
CMPXCHG—Compare and Exchange .3-107
CMPXCHG8B—Compare and Exchange 8 Bytes .3-109
COMISD—Compare Scalar Ordered Double-Precision Floating-Point

Values and Set EFLAGS .3-111
COMISS—Compare Scalar Ordered Single-Precision Floating-Point

Values and Set EFLAGS .3-114
CPUID—CPU Identification .3-117

CONTENTS

PAGE

CVTDQ2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values. 3-136

CVTDQ2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values . 3-138

CVTPD2DQ—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers . 3-140

CVTPD2PI—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers . 3-142

CVTPD2PS—Covert Packed Double-Precision Floating-Point Values
to Packed Single-Precision Floating-Point Values 3-144

CVTPI2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values. 3-146

CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values . 3-148

CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values
to Packed Doubleword Integers . 3-150

CVTPS2PD—Covert Packed Single-Precision Floating-Point Values
to Packed Double-Precision Floating-Point Values 3-152

CVTPS2PI—Convert Packed Single-Precision Floating-Point Values
to Packed Doubleword Integers . 3-154

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
5

Doubleword Integer . 3-156
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value

to Scalar Single-Precision Floating-Point Value. 3-158
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision

Floating-Point Value. 3-160
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision

Floating-Point Value. 3-162
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value

to Scalar Double-Precision Floating-Point Value 3-164
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value

to Doubleword Integer . 3-166
CVTTPD2PI—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-168
CVTTPD2DQ—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-170
CVTTPS2DQ—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-172
CVTTPS2PI—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-174
CVTTSD2SI—Convert with Truncation Scalar Double-Precision

Floating-Point Value to Signed Doubleword Integer 3-176
CVTTSS2SI—Convert with Truncation Scalar Single-Precision

Floating-Point Value to Doubleword Integer . 3-178
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword

to Quadword. 3-180
CWDE—Convert Word to Doubleword . 3-181

CONTENTS

PAGE

DAA—Decimal Adjust AL after Addition .3-182
DAS—Decimal Adjust AL after Subtraction. .3-184
DEC—Decrement by 1 .3-186
DIV—Unsigned Divide. .3-188
DIVPD—Divide Packed Double-Precision Floating-Point Values3-191
DIVPS—Divide Packed Single-Precision Floating-Point Values3-193
DIVSD—Divide Scalar Double-Precision Floating-Point Values3-195
DIVSS—Divide Scalar Single-Precision Floating-Point Values.3-197
EMMS—Empty MMX Technology State .3-199
ENTER—Make Stack Frame for Procedure Parameters 3-200
F2XM1—Compute 2x–1 .3-203
FABS—Absolute Value .3-205
FADD/FADDP/FIADD—Add .3-206
FBLD—Load Binary Coded Decimal .3-209
FBSTP—Store BCD Integer and Pop .3-211
FCHS—Change Sign .3-214
FCLEX/FNCLEX—Clear Exceptions .3-215
FCMOVcc—Floating-Point Conditional Move .3-217
FCOM/FCOMP/FCOMPP—Compare Floating Point Values 3-219
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point

Values and Set EFLAGS .3-222
6

FCOS—Cosine .3-225
FDECSTP—Decrement Stack-Top Pointer. .3-227
FDIV/FDIVP/FIDIV—Divide .3-228
FDIVR/FDIVRP/FIDIVR—Reverse Divide. .3-232
FFREE—Free Floating-Point Register .3-236
FICOM/FICOMP—Compare Integer .3-237
FILD—Load Integer .3-239
FINCSTP—Increment Stack-Top Pointer .3-241
FINIT/FNINIT—Initialize Floating-Point Unit .3-242
FIST/FISTP—Store Integer .3-244
FLD—Load Floating Point Value .3-247
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant 3-249
FLDCW—Load x87 FPU Control Word .3-251
FLDENV—Load x87 FPU Environment. .3-253
FMUL/FMULP/FIMUL—Multiply .3-255
FNOP—No Operation .3-258
FPATAN—Partial Arctangent .3-259
FPREM—Partial Remainder .3-261
FPREM1—Partial Remainder .3-264
FPTAN—Partial Tangent. .3-267
FRNDINT—Round to Integer .3-269
FRSTOR—Restore x87 FPU State .3-270
FSAVE/FNSAVE—Store x87 FPU State. .3-272
FSCALE—Scale .3-275
FSIN—Sine .3-277
FSINCOS—Sine and Cosine. .3-279

CONTENTS

PAGE

FSQRT—Square Root . 3-281
FST/FSTP—Store Floating Point Value. 3-283
FSTCW/FNSTCW—Store x87 FPU Control Word . 3-286
FSTENV/FNSTENV—Store x87 FPU Environment. 3-288
FSTSW/FNSTSW—Store x87 FPU Status Word . 3-291
FSUB/FSUBP/FISUB—Subtract . 3-294
FSUBR/FSUBRP/FISUBR—Reverse Subtract . 3-297
FTST—TEST . 3-300
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point

Values . 3-302
FWAIT—Wait . 3-305
FXAM—Examine . 3-306
FXCH—Exchange Register Contents . 3-308
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, and SSE2 State . . . 3-310
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State 3-312
FXTRACT—Extract Exponent and Significand . 3-318
FYL2X—Compute y * log2x . 3-320
FYL2XP1—Compute y * log2(x +1) . 3-322
HLT—Halt . 3-324
IDIV—Signed Divide . 3-325
IMUL—Signed Multiply . 3-328
7

IN—Input from Port . 3-332
INC—Increment by 1 . 3-334
INS/INSB/INSW/INSD—Input from Port to String . 3-336
INT n/INTO/INT 3—Call to Interrupt Procedure. 3-339
INVD—Invalidate Internal Caches . 3-351
INVLPG—Invalidate TLB Entry . 3-353
IRET/IRETD—Interrupt Return . 3-354
Jcc—Jump if Condition Is Met . 3-362
JMP—Jump . 3-366
LAHF—Load Status Flags into AH Register . 3-373
LAR—Load Access Rights Byte . 3-374
LDMXCSR—Load MXCSR Register . 3-377
LDS/LES/LFS/LGS/LSS—Load Far Pointer . 3-379
LEA—Load Effective Address . 3-382
LEAVE—High Level Procedure Exit . 3-384
LES—Load Full Pointer . 3-386
LFENCE—Load Fence . 3-387
LFS—Load Full Pointer . 3-388
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register 3-389
LGS—Load Full Pointer . 3-391
LLDT—Load Local Descriptor Table Register . 3-392
LIDT—Load Interrupt Descriptor Table Register . 3-394
LMSW—Load Machine Status Word . 3-395
LOCK—Assert LOCK# Signal Prefix . 3-397
LODS/LODSB/LODSW/LODSD—Load String . 3-399
LOOP/LOOPcc—Loop According to ECX Counter . 3-402

CONTENTS

PAGE

LSL—Load Segment Limit. .3-405
LSS—Load Full Pointer .3-408
LTR—Load Task Register .3-409
MASKMOVDQU—Store Selected Bytes of Double Quadword3-411
MASKMOVQ—Store Selected Bytes of Quadword. .3-413
MAXPD—Return Maximum Packed Double-Precision Floating-Point

Values .3-416
MAXPS—Return Maximum Packed Single-Precision Floating-Point

Values .3-419
MAXSD—Return Maximum Scalar Double-Precision Floating-Point

Value .3-422
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value3-425
MFENCE—Memory Fence .3-428
MINPD—Return Minimum Packed Double-Precision Floating-Point Values . .3-429
MINPS—Return Minimum Packed Single-Precision Floating-Point Values . . .3-432
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value 3-435
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value3-438
MOV—Move .3-441
MOV—Move to/from Control Registers .3-446
MOV—Move to/from Debug Registers .3-448
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values . . .3-450
8

MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. . . .3-452
MOVD—Move Doubleword .3-454
MOVDQA—Move Aligned Double Quadword .3-457
MOVDQU—Move Unaligned Double Quadword. .3-459
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register3-461
MOVHLPS— Move Packed Single-Precision Floating-Point Values High

to Low .3-462
MOVHPD—Move High Packed Double-Precision Floating-Point Value3-463
MOVHPS—Move High Packed Single-Precision Floating-Point Values3-465
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low

to High .3-467
MOVLPD—Move Low Packed Double-Precision Floating-Point Value.3-468
MOVLPS—Move Low Packed Single-Precision Floating-Point Values 3-470
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask . .3-472
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask . . .3-474
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint 3-476
MOVNTI—Store Doubleword Using Non-Temporal Hint.3-478
MOVNTPD—Store Packed Double-Precision Floating-Point Values

Using Non-Temporal Hint .3-480
MOVNTPS—Store Packed Single-Precision Floating-Point Values

Using Non-Temporal Hint .3-482
MOVNTQ—Store of Quadword Using Non-Temporal Hint3-484
MOVQ—Move Quadword .3-486
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register3-488
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String.3-489
MOVSD—Move Scalar Double-Precision Floating-Point Value 3-492

CONTENTS

PAGE

MOVSS—Move Scalar Single--Precision Floating-Point Values 3-495
MOVSX—Move with Sign-Extension. 3-498
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point

Values . 3-499
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point

Values . 3-501
MOVZX—Move with Zero-Extend . 3-503
MUL—Unsigned Multiply . 3-504
MULPD—Multiply Packed Double-Precision Floating-Point Values 3-506
MULPS—Multiply Packed Single-Precision Floating-Point Values 3-508
MULSD—Multiply Scalar Double-Precision Floating-Point Values 3-510
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-512
NEG—Two's Complement Negation . 3-514
NOP—No Operation . 3-516
NOT—One's Complement Negation . 3-517
OR—Logical Inclusive OR . 3-519
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 3-521
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values. 3-523
OUT—Output to Port . 3-525
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port 3-527
PACKSSWB/PACKSSDW—Pack with Signed Saturation 3-530
9

PACKUSWB—Pack with Unsigned Saturation . 3-534
PADDB/PADDW/PADDD—Add Packed Integers . 3-537
PADDQ—Add Packed Quadword Integers . 3-541
PADDSB/PADDSW—Add Packed Signed Integers with Signed

Saturation. 3-543
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned

Saturation. 3-546
PAND—Logical AND . 3-549
PANDN—Logical AND NOT . 3-551
PAUSE—Spin Loop Hint . 3-553
PAVGB/PAVGW—Average Packed Integers . 3-554
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal 3-557
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers

for Greater Than. 3-561
PEXTRW—Extract Word . 3-565
PINSRW—Insert Word . 3-568
PMADDWD—Multiply and Add Packed Integers. 3-571
PMAXSW—Maximum of Packed Signed Word Integers 3-574
PMAXUB—Maximum of Packed Unsigned Byte Integers 3-577
PMINSW—Minimum of Packed Signed Word Integers 3-580
PMINUB—Minimum of Packed Unsigned Byte Integers 3-583
PMOVMSKB—Move Byte Mask . 3-586
PMULHUW—Multiply Packed Unsigned Integers and Store High Result 3-588
PMULHW—Multiply Packed Signed Integers and Store High Result 3-591
PMULLW—Multiply Packed Signed Integers and Store Low Result 3-594
PMULUDQ—Multiply Packed Unsigned Doubleword Integers 3-597

CONTENTS

PAGE

POP—Pop a Value from the Stack .3-599
POPA/POPAD—Pop All General-Purpose Registers .3-604
POPF/POPFD—Pop Stack into EFLAGS Register .3-606
POR—Bitwise Logical OR. .3-609
PREFETCHh—Prefetch Data Into Caches .3-611
PSADBW—Compute Sum of Absolute Differences .3-613
PSHUFD—Shuffle Packed Doublewords .3-616
PSHUFHW—Shuffle Packed High Words. .3-618
PSHUFLW—Shuffle Packed Low Words .3-620
PSHUFW—Shuffle Packed Words .3-622
PSLLDQ—Shift Double Quadword Left Logical .3-624
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical3-625
PSRAW/PSRAD—Shift Packed Data Right Arithmetic3-630
PSRLDQ—Shift Double Quadword Right Logical .3-634
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical3-635
PSUBB/PSUBW/PSUBD—Subtract Packed Integers.3-640
PSUBQ—Subtract Packed Quadword Integers .3-644
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed

Saturation. .3-647
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with

Unsigned Saturation .3-650
10

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data .3-653

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data. .3-658

PUSH—Push Word or Doubleword Onto the Stack .3-663
PUSHA/PUSHAD—Push All General-Purpose Registers.3-666
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack3-668
PXOR—Logical Exclusive OR. .3-670
RCL/RCR/ROL/ROR-—Rotate .3-672
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-

Point Values. .3-677
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-

Point Values .3-679
RDMSR—Read from Model Specific Register .3-681
RDPMC—Read Performance-Monitoring Counters .3-682
RDTSC—Read Time-Stamp Counter .3-685
RDTSC—Read Time-Stamp Counter (Continued) .3-686
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix3-687
RET—Return from Procedure .3-690
ROL/ROR—Rotate .3-696
RSM—Resume from System Management Mode .3-697
RSQRTPS—Compute Reciprocals of Square Roots of Packed

Single-Precision Floating-Point Values .3-698
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-

Precision Floating-Point Value. .3-700
SAHF—Store AH into Flags .3-702

CONTENTS

PAGE

SAL/SAR/SHL/SHR—Shift . 3-703
SBB—Integer Subtraction with Borrow . 3-708
SCAS/SCASB/SCASW/SCASD—Scan String . 3-710
SETcc—Set Byte on Condition . 3-713
SFENCE—Store Fence . 3-716
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register 3-717
SHL/SHR—Shift Instructions . 3-720
SHLD—Double Precision Shift Left . 3-721
SHRD—Double Precision Shift Right . 3-723
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values. 3-725
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 3-728
SIDT—Store Interrupt Descriptor Table Register . 3-731
SLDT—Store Local Descriptor Table Register . 3-732
SMSW—Store Machine Status Word . 3-734
SQRTPD—Compute Square Roots of Packed Double-Precision

Floating-Point Values . 3-736
SQRTPS—Compute Square Roots of Packed Single-Precision

Floating-Point Values . 3-738
SQRTSD—Compute Square Root of Scalar Double-Precision

Floating-Point Value. 3-740
SQRTSS—Compute Square Root of Scalar Single-Precision
11

Floating-Point Value. 3-742
STC—Set Carry Flag . 3-744
STD—Set Direction Flag . 3-745
STI—Set Interrupt Flag . 3-746
STMXCSR—Store MXCSR Register State . 3-750
STOS/STOSB/STOSW/STOSD—Store String . 3-752
STR—Store Task Register . 3-755
SUB—Subtract. 3-756
SUBPD—Subtract Packed Double-Precision Floating-Point Values 3-758
SUBPS—Subtract Packed Single-Precision Floating-Point Values. 3-760
SUBSD—Subtract Scalar Double-Precision Floating-Point Values. 3-762
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 3-764
SYSENTER—Fast System Call. 3-766
SYSEXIT—Fast Return from Fast System Call . 3-770
TEST—Logical Compare . 3-773
UCOMISD—Unordered Compare Scalar Double-Precision Floating-

Point Values and Set EFLAGS . 3-775
UCOMISS—Unordered Compare Scalar Single-Precision Floating-

Point Values and Set EFLAGS . 3-778
UD2—Undefined Instruction . 3-781
UNPCKHPD—Unpack and Interleave High Packed Double-Precision

Floating-Point Values . 3-782
UNPCKHPS—Unpack and Interleave High Packed Single-Precision

loating-Point Values . 3-785
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision

Floating-Point Values . 3-788

CONTENTS

PAGE

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values .3-791

VERR, VERW—Verify a Segment for Reading or Writing.3-794
WAIT/FWAIT—Wait. .3-796
WBINVD—Write Back and Invalidate Cache .3-797
WRMSR—Write to Model Specific Register .3-799
XADD—Exchange and Add. .3-801
XCHG—Exchange Register/Memory with Register .3-803
XLAT/XLATB—Table Look-up Translation .3-805
XOR—Logical Exclusive OR .3-807
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values. . .3-809
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values . . .3-811

APPENDIX A
OPCODE MAP
A.1. KEY TO ABBREVIATIONS . A-1
A.1.1. Codes for Addressing Method . A-1
A.1.2. Codes for Operand Type. A-3
A.1.3. Register Codes . A-3
A.2. OPCODE LOOK-UP EXAMPLES . A-3
A.2.1. One-Byte Opcode Instructions . A-4
A.2.2. Two-Byte Opcode Instructions . A-4
12

A.2.3. Opcode Map Notes . A-5
A.2.4. Opcode Extensions For One- And Two-byte Opcodes A-12
A.2.5. Escape Opcode Instructions . A-14
A.2.5.1. Opcodes with ModR/M Bytes in the 00H through BFH Range. A-14
A.2.5.2. Opcodes with ModR/M Bytes outside the 00H through BFH Range A-14
A.2.5.3. Escape Opcodes with D8 as First Byte . A-14
A.2.5.4. Escape Opcodes with D9 as First Byte . A-16
A.2.5.5. Escape Opcodes with DA as First Byte . A-17
A.2.5.6. Escape Opcodes with DB as First Byte . A-18
A.2.5.7. Escape Opcodes with DC as First Byte . A-20
A.2.5.8. Escape Opcodes with DD as First Byte . A-21
A.2.5.9. Escape Opcodes with DE as First Byte . A-23
A.2.5.10. Escape Opcodes with DF As First Byte . A-24

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1. MACHINE INSTRUCTION FORMAT. B-1
B.1.1. Reg Field (reg). B-2
B.1.2. Encoding of Operand Size Bit (w) . B-3
B.1.3. Sign Extend (s) Bit. B-3
B.1.4. Segment Register Field (sreg). B-4
B.1.5. Special-Purpose Register (eee) Field . B-4
B.1.6. Condition Test Field (tttn) . B-5
B.1.7. Direction (d) Bit . B-5
B.2. GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS B-6
B.3. PENTIUM FAMILY INSTRUCTION FORMATS AND ENCODINGS B-19
B.4. MMX INSTRUCTION FORMATS AND ENCODINGS . B-20
B.4.1. Granularity Field (gg). B-20

CONTENTS

PAGE

B.4.2. MMX Technology and General-Purpose Register Fields (mmxreg and reg) . . . B-20
B.4.3. MMX Instruction Formats and Encodings Table . B-20
B.5. P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS B-24
B.6. SSE INSTRUCTION FORMATS AND ENCODINGS. B-25
B.7. SSE2 INSTRUCTION FORMATS AND ENCODINGS. B-33
B.7.1. Granularity Field (gg) . B-33
B.8. FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS. B-46

APPENDIX C
INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1. SIMPLE INTRINSICS . C-3
C.2. COMPOSITE INTRINSICS. C-31
13

CONTENTS

PAGE
14

xv

FIGURES
PAGE

Figure 1-1. Bit and Byte Order .1-3
Figure 2-1. IA-32 Instruction Format .2-1
Figure 3-1. Bit Offset for BIT[EAX,21] .3-9
Figure 3-2. Memory Bit Indexing .3-9
Figure 3-3. Version Information in the EAX Register .3-120
Figure 3-4. Extended Feature Flags Returned in ECX Register3-122
Figure 3-5. Feature Information in the EDX Register .3-123
Figure 3-6. Operation of the PACKSSDW Instruction Using 64-bit Operands..3-530
Figure 3-7. PMADDWD Execution Model Using 64-bit Operands 3-571
Figure 3-8. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands . .3-588
Figure 3-9. PMULLU Instruction Operation Using 64-bit Operands3-594
Figure 3-10. PSADBW Instruction Operation Using 64-bit Operands.3-613
Figure 3-11. PSHUFD Instruction Operation. .3-616
Figure 3-12. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit

Operand .3-625
Figure 3-13. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand3-630
Figure 3-14. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit

Operand .3-635
Figure 3-15. PUNPCKHBW Instruction Operation Using 64-bit Operands.3-653
Figure 3-16. PUNPCKLBW Instruction Operation Using 64-bit Operands3-658
Figure 3-17. SHUFPD Shuffle Operation .3-725
Figure 3-18. SHUFPS Shuffle Operation .3-728
Figure 3-19. UNPCKHPD Instruction High Unpack and Interleave Operation3-782
Figure 3-20. UNPCKHPS Instruction High Unpack and Interleave Operation 3-785
Figure 3-21. UNPCKLPD Instruction Low Unpack and Interleave Operation3-788
Figure 3-22. UNPCKLPS Instruction Low Unpack and Interleave Operation3-791
Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3). A-12
Figure B-1. General Machine Instruction Format . B-1

TABLE OF TABLES

PAGE

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte . 2-5
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte . 2-6
Table 2-3. 32-Bit Addressing Forms with the SIB Byte . 2-7
Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature . . . 3-3
Table 3-2. IA-32 General Exceptions . 3-13
Table 3-3. x87 FPU Floating-Point Exceptions . 3-14
Table 3-4. SIMD Floating-Point Exceptions . 3-15
Table 3-5. Decision Table for CLI Results . 3-76
Table 3-6. Comparison Predicate for CMPPD and CMPPS Instructions 3-87
Table 3-7. Information Returned by CPUID Instruction . 3-118
Table 3-8. Highest CPUID Source Operand for IA-32 Processors. 3-119
Table 3-9. Processor Type Field . 3-120
Table 3-10. Extended Feature Flags Returned in ECX Register 3-122
Table 3-11. CPUID Feature Flags Returned in EDX Register . 3-124
Table 3-12. Encoding of Cache and TLB Descriptors . 3-127
Table 3-13. Mapping of Brand Indices and IA-32 Processor Brand Strings. 3-131
Table 3-14. Processor Brand String Returned with First Pentium 4 Processor 3-133
Table 3-15. Layout of FXSAVE and FXRSTOR Memory Region. 3-312
Table 3-16. Decision Table for STI Results . 3-747
Table 3-17. MSRs Used By the SYSENTER and SYSEXIT Instructions. 3-766
Table A-1. Notes on Instruction Set Encoding Tables . A-5
Table A-2. One-byte Opcode Map: 00H — F7H†. A-6
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH)†. A-8
xvi

Table A-4. Opcode Extensions for One- and Two-byte Opcodes by Group Number . . . A-13
Table A-5. D8 Opcode Map When ModR/M Byte is Within 00H to BFH1 A-14
Table A-6. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-15
Table A-7. D9 Opcode Map When ModR/M Byte is Within 00H to BFH1. A-16
Table A-8. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-17
Table A-9. DA Opcode Map When ModR/M Byte is Within 00H to BFH1 A-17
Table A-10. DA Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-18
Table A-11. DB Opcode Map When ModR/M Byte is Within 00H to BFH1 A-19
Table A-12. DB Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-19
Table A-13. DC Opcode Map When ModR/M Byte is Within 00H to BFH1 A-20
Table A-14. DC Opcode Map When ModR/M Byte is Outside 00H to BFH4 A-21
Table A-15. DD Opcode Map When ModR/M Byte is Within 00H to BFH1 A-22
Table A-16. DD Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-22
Table A-17. DE Opcode Map When ModR/M Byte is Within 00H to BFH1 A-23
Table A-18. DE Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-24
Table A-19. DF Opcode Map When ModR/M Byte is Within 00H to BFH1 A-25
Table A-20. DF Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-25
Table B-1. Special Fields Within Instruction Encodings . B-2
Table B-2. Encoding of reg Field When w Field is Not Present in Instruction B-2
Table B-3. Encoding of reg Field When w Field is Present in Instruction. B-3
Table B-4. Encoding of Operand Size (w) Bit . B-3
Table B-5. Encoding of Sign-Extend (s) Bit . B-3
Table B-6. Encoding of the Segment Register (sreg) Field . B-4
Table B-7. Encoding of Special-Purpose Register (eee) Field . B-4
Table B-8. Encoding of Conditional Test (tttn) Field . B-5
Table B-9. Encoding of Operation Direction (d) Bit . B-6
Table B-10. General Purpose Instruction Formats and Encodings B-6
Table B-11. Pentium Family Instruction Formats and Encodings. B-19
Table B-12. Encoding of Granularity of Data Field (gg) . B-20

TABLE OF TABLES

PAGE

Table B-13. MMX Instruction Formats and Encodings . B-20
Table B-14. Formats and Encodings of P6 Family Instructions . B-24
Table B-15. Formats and Encodings of SSE SIMD Floating-Point Instructions B-25
Table B-16. Formats and Encodings of SSE SIMD Integer Instructions B-31
Table B-17. Format and Encoding of the SSE Cacheability and Memory Ordering

Instructions . B-32
Table B-18. Encoding of Granularity of Data Field (gg) . B-33
Table B-19. Formats and Encodings of the SSE2 SIMD Floating-Point

Instructions . B-33
Table B-20. Formats and Encodings of the SSE2 SIMD Integer Instructions B-40
Table B-21. Format and Encoding of the SSE2 Cacheability Instructions B-45
Table B-22. General Floating-Point Instruction Formats . B-46
Table B-23. Floating-Point Instruction Formats and Encodings . B-47
Table C-1. Simple Intrinsics . C-3
Table C-2. Composite Intrinsics . C-31
xvii

1
About This Manual

CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 2: Instruction Set Refer-
ence (Order Number 245471) is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel Architecture processors. The other two volumes in
this set are:

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470).

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programing
Guide (Order Number 245472).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an IA-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instructions set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
1-1

Software Developer’s Manual, Volume 3, describes the operating-system support environment
of an IA-32 processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides IA-32 processor
compatibility information. This volume is aimed at operating-system and BIOS designers and
programmers.

1.1. IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes information pertaining primarily to the most recent IA-32 processors,
which include the Pentium® processors, the P6 family processors, the Pentium 4 processors, the
Intel® Xeon™ processors, and the Pentium M processors. The P6 family processors are those
IA-32 processors based on the P6 family micro-architecture, which include the Pentium Pro,
Pentium II, and Pentium III processors. The Pentium 4 and Intel Xeon processors are based on
the Intel® NetBurst™ micro-architecture.

ABOUT THIS MANUAL

1.2. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 2:
INSTRUCTION SET REFERENCE

The contents of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2 are as
follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte
(ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and
immediate bytes.

Chapter 3 — Instruction Set Reference. Describes each of the IA-32 instructions in detail,
including an algorithmic description of operations, the effect on flags, the effect of operand- and
address-size attributes, and the exceptions that may be generated. The instructions are arranged
in alphabetical order. The general-purpose, x87 FPU, Intel MMX™ technology, Streaming
SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), and system instructions are
1-2

included in this chapter.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form
of each IA-32 instruction.

Appendix C — Intel C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel
C/C++ compiler intrinsics and their assembly code equivalents for each of the IA-32 MMX,
SSE, and SSE2 instructions.

1.3. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

ABOUT THIS MANUAL

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8
4
0 Address

Byte Offset
1-3

bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in IA-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

ABOUT THIS MANUAL

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is
used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
1-4

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes in memory. The range of memory that can be addressed is called an
address space.

ABOUT THIS MANUAL

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
1-5

points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a list of exception mnemonics and their descriptions.

ABOUT THIS MANUAL

1.4. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at the following Intel web site:

http://developer.intel.com/design/processors/

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types: applications notes, data sheets, manuals, papers, and specification updates. The following
literature may be of interest:

• Data Sheet for a particular Intel IA-32 processor.

• Specification Update for a particular Intel IA-32 processor.

• AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

• Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.
1-6

2
Instruction Format

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all IA-32 processors.

2.1. GENERAL INSTRUCTION FORMAT

All IA-32 instruction encodings are subsets of the general instruction format shown in Figure
2-1. Instructions consist of optional instruction prefixes (in any order), one or two primary
opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte and
sometimes the SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate data
field (if required).

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate
2-1

2.2. INSTRUCTION PREFIXES

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes:

• Group 1

— Lock and repeat prefixes:

• F0H—LOCK.

• F2H—REPNE/REPNZ (used only with string instructions).

• F3H—REP or REPE/REPZ (use only with string instructions).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

Figure 2-1. IA-32 Instruction Format

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of

1-byte each
(optional)

INSTRUCTION FORMAT

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).

• Group 3

— 66H—Operand-size override prefix.

• Group 4

— 67H—Address-size override prefix.

For each instruction, one prefix may be used from each of these groups and be placed in any
order. Using redundant prefixes (more than one prefix from a group) is reserved and may cause
unpredictable behavior.
2-2

The LOCK prefix forces an atomic operation to insure exclusive use of shared memory in a
multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, Instruc-
tion Set Reference, for a detailed description of this prefix and the instructions with which it can
be used.

The repeat prefixes cause an instruction to be repeated for each element of a string. They can be
used only with the string instructions: MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS.
Use of the repeat prefixes with other IA-32 instructions is reserved and may cause unpredictable
behavior (see the note below).

The branch hint prefixes allow a program to give a hint to the processor about the most likely
code path that will be taken at a branch. These prefixes can only be used with the conditional
branch instructions (Jcc). Use of these prefixes with other IA-32 instructions is reserved and
may cause unpredictable behavior. The branch hint prefixes were introduced in the Pentium 4
and Intel Xeon processors as part of the SSE2 extensions.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand
sizes. Either operand size can be the default. This prefix selects the non-default size. Use of this
prefix with MMX, SSE, and/or SSE2 instructions is reserved and may cause unpredictable
behavior (see the note below).

The address-size override prefix allows a program to switch between 16- and 32-bit addressing.
Either address size can be the default. This prefix selects the non-default size. Using this prefix
when the operands for an instruction do not reside in memory is reserved and may cause unpre-
dictable behavior.

INSTRUCTION FORMAT

NOTE

Some of the SSE and SSE2 instructions have three-byte opcodes. For these
three-byte opcodes, the third opcode byte may be F2H, F3H, or 66H. For
example, the SSE2 instruction CVTDQ2PD has the three-byte opcode F3 OF
E6. The third opcode byte of these three-byte opcodes should not be thought
of as a prefix, even though it has the same encoding as the operand size prefix
(66H) or one of the repeat prefixes (F2H and F3H). As described above,
using the operand size and repeat prefixes with SSE and SSE2 instructions is
reserved. It should also be noted that execution of SSE2 instructions on an
Intel processor that does not support SSE2 (CPUID Feature flag register EDX
bit 26 is clear) will result in unpredictable code execution.

2.3. OPCODE

The primary opcode is 1, 2, or 3 bytes. An additional 3-bit opcode field is sometimes encoded
in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These
fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on
the class of operation.
2-3

2.4. MODR/M AND SIB BYTES

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the primary opcode.

• The r/m field can specify a register as an operand or can be combined with the mod field to
encode an addressing mode.

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit
addressing require the SIB byte. The SIB byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

See Section 2.6., “Addressing-Mode Encoding of ModR/M and SIB Bytes”, for the encodings
of the ModR/M and SIB bytes.

INSTRUCTION FORMAT

2.5. DISPLACEMENT AND IMMEDIATE BYTES

Some addressing forms include a displacement immediately following the ModR/M byte (or the
SIB byte if one is present). If a displacement is required, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.

2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB
BYTES

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Tables 2-1 through 2-3. The 16-bit addressing forms specified by the ModR/M byte are in Table
2-1, and the 32-bit addressing forms specified by the ModR/M byte are in Table 2-2. Table 2-3
shows the 32-bit addressing forms specified by the SIB byte.

In Tables 2-1 and 2-2, the first column (labeled “Effective Address”) lists 32 different effective
addresses that can be assigned to one operand of an instruction by using the Mod and R/M fields
of the ModR/M byte. The first 24 effective addresses give the different ways of specifying a
memory location; the last eight (specified by the Mod field encoding 11B) give the ways of spec-
ifying the general-purpose, MMX technology, and XMM registers. Each of the register encod-
2-4

ings list five possible registers. For example, the first register-encoding (selected by the R/M
field encoding of 000B) indicates the general-purpose registers EAX, AX or AL, MMX tech-
nology register MM0, or XMM register XMM0. Which of these five registers is used is deter-
mined by the opcode byte and the operand-size attribute, which select either the EAX register
(32 bits) or AX register (16 bits).

The second and third columns in Tables 2-1 and 2-2 gives the binary encodings of the Mod and
R/M fields in the ModR/M byte, respectively, required to obtain the associated effective address
listed in the first column. All 32 possible combinations of the Mod and R/M fields are listed.

Across the top of Tables 2-1 and 2-2, the eight possible values of the 3-bit Reg/Opcode field are
listed, in decimal (sixth row from top) and in binary (seventh row from top). The seventh row is
labeled “REG=”, which represents the use of these 3 bits to give the location of a second
operand, which must be a general-purpose, MMX technology, or XMM register. If the instruc-
tion does not require a second operand to be specified, then the 3 bits of the Reg/Opcode field
may be used as an extension of the opcode, which is represented by the sixth row, labeled “/digit
(Opcode)”. The five rows above give the byte, word, and doubleword general-purpose registers,
the MMX technology registers, and the XMM registers that correspond to the register numbers,
with the same assignments as for the R/M field when Mod field encoding is 11B. As with the
R/M field register options, which of the five possible registers is used is determined by the
opcode byte along with the operand-size attribute.

The body of Tables 2-1 and 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”)
contains a 32 by 8 array giving all of the 256 values of the ModR/M byte, in hexadecimal. Bits
3, 4 and 5 are specified by the column of the table in which a byte resides, and the row specifies
bits 0, 1 and 2, and also bits 6 and 7.

INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8

01 000
001
010
011
100
101

40
41
42
43
44
45

48
49
4A
4B
4C
4D

50
51
52
53
54
55

58
59
5A
5B
5C
5D

60
61
62
63
64
65

68
69
6A
6B
6C
6D

70
71
72
73
74
75

78
79
7A
7B
7C
7D
2-5

NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added
to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-
extended and added to the index.

[BP]+disp8
[BX]+disp8

110
111

46
47

4E
4F

56
57

5E
5F

66
67

6E
6F

76
77

7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

INSTRUCTION FORMAT

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8

01 000
001
010
011
100
101

40
41
42
43
44
45

48
49
4A
4B
4C
4D

50
51
52
53
54
55

58
59
5A
5B
5C
5D

60
61
62
63
64
65

68
69
6A
6B
6C
6D

70
71
72
73
74
75

78
79
7A
7B
7C
7D
2-6

NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows ModR/M byte (or the SIB byte if one
is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows ModR/M byte (or the SIB byte if one
is present) and that is sign-extended and added to the index.

[ESI]+disp8
[EDI]+disp8

110
111

46
47

4E
4F

56
57

5E
5F

66
67

6E
6F

76
77

7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

INSTRUCTION FORMAT

Table 2-3 is organized similarly to Tables 2-1 and 2-2, except that its body gives the 256 possible
values of the SIB byte, in hexadecimal. Which of the 8 general-purpose registers will be used as
base is indicated across the top of the table, along with the corresponding values of the base field
(bits 0, 1 and 2) in decimal and binary. The rows indicate which register is used as the index
(determined by bits 3, 4 and 5) along with the scaling factor (determined by bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]

01 000
001
010

40
48
50

41
49
51

42
4A
52

43
4B
53

44
4C
54

45
4D
55

46
4E
56

47
4F
57
2-7

NOTE:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or
disp32 + [EBP]. This provides the following address modes:

MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

011
100
101
110
111

58
60
68
70
78

59
61
69
71
79

5A
62
6A
72
7A

5B
63
6B
73
7B

5C
64
6C
74
7C

5D
65
6D
75
7D

5E
66
6E
76
7E

5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

INSTRUCTION FORMAT

.

2-8

3
Instruction Set
Reference

CHAPTER 3
INSTRUCTION SET REFERENCE

This chapter describes the complete IA-32 instruction set, including the general-purpose, x87
FPU, MMX, SSE, SSE2, and system instructions. The instruction descriptions are arranged in
alphabetical order. For each instruction, the forms are given for each operand combination,
including the opcode, operands required, and a description. Also given for each instruction are
a description of the instruction and its operands, an operational description, a description of the
effect of the instructions on flags in the EFLAGS register, and a summary of the exceptions that
can be generated.

3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.
3-1

3.1.1. Instruction Format

The following is an example of the format used for each IA-32 instruction description in this
chapter:

INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

3.1.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear
in memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

• /r—Indicates that the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

• cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

Opcode Instruction Description

F5 CMC Complement carry flag
3-2

• ib, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doublewords are given with the low-order
byte first.

• +rb, +rw, +rd—A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The register codes are given in Table
3-3.

• +i—A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

INSTRUCTION SET REFERENCE

3.1.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7
3-3

• rel8—A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

• rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

• ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of
the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8—One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16—One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32—One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, EBP,
ESI, or EDI.

• imm8—An immediate byte value. The imm8 symbol is a signed number between –128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

• imm16—An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32,768 and +32,767 inclusive.

INSTRUCTION SET REFERENCE

• imm32—An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
–2,147,483,648 inclusive.

• r/m8—A byte operand that is either the contents of a byte general-purpose register (AL,
BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16—A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, BX, CX,
DX, SP, BP, SI, and DI. The contents of memory are found at the address provided by the
effective address computation.

• r/m32—A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are:
EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at the
address provided by the effective address computation.

• m—A 16- or 32-bit operand in memory.

• m8—A byte operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions and the XLAT instruction.

• m16—A word operand in memory, usually expressed as a variable or array name, but
3-4

pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

• m32—A doubleword operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with
the string instructions.

• m64—A memory quadword operand in memory. This nomenclature is used only with the
CMPXCHG8B instruction.

• m128—A memory double quadword operand in memory. This nomenclature is used only
with the SSE and SSE2 instructions.

• m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

• m16&32, m16&16, m32&32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

• moffs8, moffs16, moffs32—A simple memory variable (memory offset) of type byte,
word, or doubleword used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the

INSTRUCTION SET REFERENCE

instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

• Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

• m32fp, m64fp, m80fp—A single-precision, double-precision, and double extended-
precision (respectively) floating-point operand in memory. These symbols designate
floating-point values that are used as operands for x87 FPU floating-point instructions.

• m16int, m32int, m64int—A word, doubleword, and quadword integer (respectively)
operand in memory. These symbols designate integers that are used as operands for x87
FPU integer instructions.

• ST or ST(0)—The top element of the FPU register stack.

• ST(i)—The ith element from the top of the FPU register stack. (i ← 0 through 7)

• mm—An MMX technology register. The 64-bit MMX technology registers are: MM0
through MM7.

• mm/m32—The low order 32 bits of an MMX technology register or a 32-bit memory
operand. The 64-bit MMX technology registers are: MM0 through MM7. The contents of
memory are found at the address provided by the effective address computation.
3-5

• mm/m64—An MMX technology register or a 64-bit memory operand. The 64-bit MMX
technology registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.

• xmm—An XMM register. The 128-bit XMM registers are: XMM0 through XMM7.

• xmm/m32—An XMM register or a 32-bit memory operand. The 128-bit XMM registers
are XMM0 through XMM7. The contents of memory are found at the address provided by
the effective address computation.

• xmm/m64—An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-
point registers are XMM0 through XMM7. The contents of memory are found at the
address provided by the effective address computation.

• xmm/m128—An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7. The contents of memory are found at the address
provided by the effective address computation.

3.1.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain more
details of the instruction's operation.

INSTRUCTION SET REFERENCE

3.1.1.4. DESCRIPTION

The “Description” section describes the purpose of the instructions and the required operands.
It also discusses the effect of the instruction on flags.

3.1.2. Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register SI relative
to the SI register’s default segment (DS) or overridden segment.
3-6

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates
that an offset is read from the SI register if the current address-size attribute is 16 or is read
from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠, ≥, and ≤ are relational operators used to compare two values, meaning
equal, not equal, greater or equal, less or equal, respectively. A relational expression such
as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand
should be shifted left or right, respectively, by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize—The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the
following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD

INSTRUCTION SET REFERENCE

THEN OperandSize ← 32;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1, for general guidelines on how these
attributes are determined.

• StackAddrSize—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for Stack” in
Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1).

• SRC—Represents the source operand.

• DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
–10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.
3-7

• SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value –10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte—Converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than –128, it is represented by the saturated value –
128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord—Converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than –32768, it is represented by the saturated value
–32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767
(7FFFH).

INSTRUCTION SET REFERENCE

• SaturateSignedWordToUnsignedByte—Converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated
value zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToSignedByte—Represents the result of an operation as a signed 8-bit value. If
the result is less than –128, it is represented by the saturated value –128 (80H); if it is
greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord—Represents the result of an operation as a signed 16-bit value.
If the result is less than –32768, it is represented by the saturated value –32768 (8000H); if
it is greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte—Represents the result of an operation as a signed 8-bit value.
If the result is less than zero it is represented by the saturated value zero (00H); if it is
greater than 255, it is represented by the saturated value 255 (FFH).

• SaturateToUnsignedWord—Represents the result of an operation as a signed 16-bit
value. If the result is less than zero it is represented by the saturated value zero (00H); if it
is greater than 65535, it is represented by the saturated value 65535 (FFFFH).

• RoundTowardsZero()—Returns the operand rounded towards zero to the nearest integral
value.
3-8

• LowOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the most significant word of the doubleword result in the destination operand.

• Push(value)—Pushes a value onto the stack. The number of bytes pushed is determined by
the operand-size attribute of the instruction. See the “Operation” section in “PUSH—Push
Word or Doubleword Onto the Stack” in this chapter for more information on the push
operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ←
Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a
word or a doubleword depending on the operand-size attribute. See the “Operation”
section in Chapter 3, “POP—Pop a Value from the Stack” for more information on the pop
operation.

• PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

• Switch-Tasks—Performs a task switch.

• Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit[EAX, 21] is illustrated in Figure 3-1.

INSTRUCTION SET REFERENCE

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 3-2.

Figure 3-1. Bit Offset for BIT[EAX,21]

02131

BitOffset ← 21

0777 5 0 0
3-9

3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions that allow
using the syntax of C function calls and C variables instead of hardware registers. Using these
intrinsics frees programmers from having to manage registers and assembly programming.
Further, the compiler optimizes the instruction scheduling so that executables runs faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD floating-
point intrinsics. Each intrinsic equivalent is listed with the instruction description. There may be
additional intrinsics that do not have an instruction equivalent. It is strongly recommended that
the reader reference the compiler documentation for the complete list of supported intrinsics.

Figure 3-2. Memory Bit Indexing

BitBase + 1

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ← +13

BitOffset ← −11

BitBase − 1BitBase

INSTRUCTION SET REFERENCE

Please refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001). See Appendix C, Intel C/C++ Compiler Intrinsics
and Functional Equivalents for more information on using intrinsics.

3.1.3.1. THE INTRINSICS API

The benefit of coding with MMX technology intrinsics and the SSE and SSE2 intrinsics is that
you can use the syntax of C function calls and C variables instead of hardware registers. This
frees you from managing registers and programming assembly. Further, the compiler optimizes
the instruction scheduling so that your executable runs faster. For each computational and data
manipulation instruction in the new instruction set, there is a corresponding C intrinsic that
implements it directly. The intrinsics allow you to specify the underlying implementation
(instruction selection) of an algorithm yet leave instruction scheduling and register allocation to
the compiler.

3.1.3.2. MMX™ TECHNOLOGY INTRINSICS

The MMX technology intrinsics are based on a new __m64 data type to represent the specific
contents of an MMX technology register. You can specify values in bytes, short integers, 32-bit
values, or a 64-bit object. The __m64 data type, however, is not a basic ANSI C data type, and
therefore you must observe the following usage restrictions:
3-10

• Use __m64 data only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (“+”, “>>”, and so on).

• Use __m64 objects in aggregates, such as unions to access the byte elements and
structures; the address of an __m64 object may be taken.

• Use __m64 data only with the MMX technology intrinsics described in this guide and the
Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Extensions 2
(Order Number 718195-2001). Refer to Appendix C, Intel C/C++ Compiler Intrinsics and
Functional Equivalents for more information on using intrinsics.

3.1.3.3. SSE AND SSE2 INTRINSICS

The SSE and SSE2 intrinsics all make use of the XMM registers of the Pentium III, Pentium 4,
and Intel Xeon processors. There are three data types supported by these intrinsics: __m128,
__m128d, and __m128i.

• The __m128 data type is used to represent the contents of an XMM register used by an
SSE intrinsic. This is either four packed single-precision floating-point values or a scalar
single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values or a
scalar double-precision floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or two
quadword integer values.

INSTRUCTION SET REFERENCE

The compiler aligns __m128, __m128d, and __m128i local and global data to 16-byte bound-
aries on the stack. To align integer, float, or double arrays, you can use the declspec statement
as described in the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001).

The __m128, __m128d, and __m128i data types are not basic ANSI C data types and therefore
some restrictions are placed on its usage:

• Use __m128, __m128d, and __m128i only on the left-hand side of an assignment, as a
return value, or as a parameter. Do not use it in other arithmetic expressions such as “+” and
“>>”.

• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to express
128-bit constants.

• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for example,
to access the float elements) and structures. The address of these objects may be taken.

• Use __m128, __m128d, and __m128i data only with the intrinsics described in this user’s
guide. Refer to Appendix C, Intel C/C++ Compiler Intrinsics and Functional Equivalents
for more information on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte boundaries on the
stack. Global __m128 data is also aligned on 16-byte boundaries. (To align float arrays, you can
3-11

use the alignment declspec described in the following section.) Because the new instruction set
treats the SIMD floating-point registers in the same way whether you are using packed or scalar
data, there is no __m32 data type to represent scalar data as you might expect. For scalar oper-
ations, you should use the __m128 objects and the “scalar” forms of the intrinsics; the compiler
and the processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” precision opera-
tions. The packed floats are represented in right-to-left order, with the lowest word (right-most)
being used for scalar operations: [z, y, x, w]. To explain how memory storage reflects this,
consider the following example.

The operation

float a[4] ← { 1.0, 2.0, 3.0, 4.0 };
__m128 t ← _mm_load_ps(a);

produces the same result as follows:

__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words,

t ← [4.0, 3.0, 2.0, 1.0]

where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to implement
them. You should be familiar with the hardware features provided by the SSE, SSE2, and MMX
technology when writing programs with the intrinsics.

INSTRUCTION SET REFERENCE

Keep the following three important issues in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported
by the instruction set. While these intrinsics are convenient programming aids, be mindful
of their implementation cost.

• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, floating-point operations using NaN arguments may not match the
expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to its usage,
refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Extensions
2 (Order Number 718195-2001). Refer to Appendix C, Intel C/C++ Compiler Intrinsics and
Functional Equivalents for more information on using intrinsics.

3.1.4. Flags Affected
3-12

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic
and logical instructions usually assign values to the status flags in a uniform manner (see
Appendix A, EFLAGS Cross-Reference, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1). Non-conventional assignments are described in the “Operation” section.
The values of flags listed as undefined may be changed by the instruction in an indeterminate
manner. Flags that are not listed are unchanged by the instruction.

3.1.5. FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3.1.6. Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given
a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 3-2 associates each two-letter mnemonic with the corresponding interrupt vector
number and exception name. See Chapter 5, Interrupt and Exception Handling, in the IA-32
Intel Architecture Software Developer’s Manual, Volume 3, for a detailed description of the
exceptions.

INSTRUCTION SET REFERENCE

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

Table 3-2. IA-32 General Exceptions

Vector
No. Name Source

Protected
Mode

Real
Address

Mode

Virtual
8086
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND
Range Exceeded

BOUND instruction. Yes Yes Yes

 6 #UD—Invalid
Opcode (Undefined
Opcode)

UD2 instruction or reserved
opcode.

Yes Yes Yes

 7 #NM—Device Not
Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes
3-13

NOTE:

* In the real-address mode, vector 13 is the segment overrun exception.

 8 #DF—Double Fault Any instruction that can
generate an exception, an
NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not
Present

Loading segment registers or
accessing system segments.

Yes Reserved Yes

12 #SS—Stack
Segment Fault

Stack operations and SS
register loads.

Yes Yes Yes

13 #GP—General
Protection*

Any memory reference and
other protection checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point
Error (Math Fault)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

17 #AC—Alignment
Check

Any data reference in memory. Yes Reserved Yes

18 #MC—Machine
Check

Model dependent machine
check errors.

Yes Yes Yes

19 #XF—SIMD
Floating-Point
Numeric Error

SSE and SSE2 floating-point
instructions.

Yes Yes Yes

INSTRUCTION SET REFERENCE

3.1.7. Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode (see Table 3-2).

3.1.8. Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode (see Table 3-2).

3.1.9. Floating-Point Exceptions

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU
floating-point instruction is executed. All of these exception conditions result in a floating-point
error exception (#MF, vector number 16) being generated. Table 3-3 associates a one- or two-
letter mnemonic with the corresponding exception name. See “Floating-Point Exception Condi-
tions” in Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for
a detailed description of these exceptions.
3-14

3.1.10. SIMD Floating-Point Exceptions

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE and
SSE2 floating-point instruction is executed. All of these exception conditions result in a SIMD
floating-point error exception (#XF, vector number 19) being generated. Table 3-4 associates a
one-letter mnemonic with the corresponding exception name. For a detailed description of these
exceptions, refer to ”SSE and SSE2 Exceptions”, in Chatper 11 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1.

Table 3-3. x87 FPU Floating-Point Exceptions

Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- x87 FPU stack overflow or underflow
- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

INSTRUCTION SET REFERENCE

3.2. INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of each of the IA-32 instructions.

Table 3-4. SIMD Floating-Point Exceptions

Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
3-15

INSTRUCTION SET REFERENCE

AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF
flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register
is unchanged. In either case, bits 4 through 7 of the AL register are set to 0.

Operation

IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

Opcode Instruction Description

37 AAA ASCII adjust AL after addition
3-16

AL ← AL + 6;
AH ← AH + 1;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
set to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AX register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any
number base (see the “Operation” section below), by setting the imm8 byte to the selected
number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

D5 ib (No mnemonic) Adjust AX before division to number base imm8
3-17

AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To
adjust values in another number base, the instruction must be hand coded in machine code (D5
imm8).

Operation

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH ← 0

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the
OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
(base 10) BCD values. The AX register is the implied source and destination operand for this
instruction. The AAM instruction is only useful when it follows an MUL instruction that multi-
plies (binary multiplication) two unpacked BCD values and stores a word result in the AX
register. The AAM instruction then adjusts the contents of the AX register to contain the correct
2-digit unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create
two unpacked digits of any number base (see the “Operation” section below). Here, the imm8
byte is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH
for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to
ASCII (base 10) values. To adjust to values in another number base, the instruction must be hand

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

D4 ib (No mnemonic) Adjust AX after multiply to number base imm8
3-18

coded in machine code (D4 imm8).

Operation

tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The
OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None with the default immediate value of 0AH. If, however, an immediate value of 0 is used, it
will cause a #DE (divide error) exception.

INSTRUCTION SET REFERENCE

AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked
BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction
3-19

IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;

ELSE
CF ← 0;
AF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are set to 0. The
OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

ADC—Add with Carry

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32
3-20

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The state of the
CF flag represents a carry from a previous addition. When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

INSTRUCTION SET REFERENCE

ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
3-21

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

ADD—Add

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32
3-22

Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However,
two memory operands cannot be used in one instruction.) When an immediate value is used as
an operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the
signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

INSTRUCTION SET REFERENCE

ADD—Add (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
3-23

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

ADDPD—Add Packed Double-Precision Floating-Point Values

Description

Performs a SIMD add of the two packed double-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source operand can be an
XMM register or a 128-bit memory location. The destination operand is an XMM register. See
Figure 11-3 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of a SIMD double-precision floating-point operation.

Operation

DEST[63-0] ← DEST[63-0] + SRC[63-0];
DEST[127-64] ← DEST[127-64] + SRC[127-64];

Opcode Instruction Description

66 0F 58 /r ADDPD xmm1, xmm2/m128 Add packed double-precision floating-point values
from xmm2/m128 to xmm1.
3-24

Intel C/C++ Compiler Intrinsic Equivalent

ADDPD __m128d _mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

ADDPD—Add Packed Double-Precision Floating-Point Values
(Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-25

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault

INSTRUCTION SET REFERENCE

ADDPS—Add Packed Single-Precision Floating-Point Values

Description

Performs a SIMD add of the four packed single-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
single-precision floating-point results in the destination operand. The source operand can be an
XMM register or a 128-bit memory location. The destination operand is an XMM register. See
Figure 10-5 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of a SIMD single-precision floating-point operation.

Operation

DEST[31-0] ← DEST[31-0] + SRC[31-0];
DEST[63-32] ← DEST[63-32] + SRC[63-32];
DEST[95-64] ← DEST[95-64] + SRC[95-64];

Opcode Instruction Description

0F 58 /r ADDPS xmm1, xmm2/m128 Add packed single-precision floating-point values from
xmm2/m128 to xmm1.
3-26

DEST[127-96] ← DEST[127-96] + SRC[127-96];

Intel C/C++ Compiler Intrinsic Equivalent

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

ADDPS—Add Packed Single-Precision Floating-Point Values
(Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-27

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

ADDSD—Add Scalar Double-Precision Floating-Point Values

Description

Adds the low double-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the double-precision floating-point result
in the destination operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the destination
operand remains unchanged. See Figure 11-4 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1 for an illustration of a scalar double-precision floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] + SRC[63-0];
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent

Opcode Instruction Description

F2 0F 58 /r ADDSD xmm1, xmm2/m64 Add the low double-precision floating-point value from
xmm2/m64 to xmm1.
3-28

ADDSD __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

ADDSD—Add Scalar Double-Precision Floating-Point Values
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-29

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

ADDSS—Add Scalar Single-Precision Floating-Point Values

Description

Adds the low single-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the single-precision floating-point result
in the destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order doublewords of the
destination operand remain unchanged. See Figure 10-6 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1 for an illustration of a scalar single-precision floating-point oper-
ation.

Operation

DEST[31-0] ← DEST[31-0] + SRC[31-0];
* DEST[127-32] remain unchanged *;

Opcode Instruction Description

F3 0F 58 /r ADDSS xmm1, xmm2/m32 Add the low single-precision floating-point value from
xmm2/m32 to xmm1.
3-30

Intel C/C++ Compiler Intrinsic Equivalent

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

INSTRUCTION SET REFERENCE

ADDSS—Add Scalar Single-Precision Floating-Point Values
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-31

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

AND—Logical AND

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)

83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32
3-32

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result is set to
1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

INSTRUCTION SET REFERENCE

AND—Logical AND (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
3-33

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

ANDPD—Bitwise Logical AND of Packed Double-Precision
Floating-Point Values

Description

Performs a bitwise logical AND of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

Operation

DEST[127-0] ← DEST[127-0] BitwiseAND SRC[127-0];

Intel C/C++ Compiler Intrinsic Equivalent

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

Opcode Instruction Description

66 0F 54 /r ANDPD xmm1, xmm2/m128 Bitwise logical AND of xmm2/m128 and xmm1.
3-34

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

ANDPD—Bitwise Logical AND of Packed Double-Precision
Floating-Point Values (Continued)

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
3-35

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

ANDPS—Bitwise Logical AND of Packed Single-Precision
Floating-Point Values

Description

Performs a bitwise logical AND of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

Operation

DEST[127-0] ← DEST[127-0] BitwiseAND SRC[127-0];

Intel C/C++ Compiler Intrinsic Equivalent

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

Opcode Instruction Description

0F 54 /r ANDPS xmm1, xmm2/m128 Bitwise logical AND of xmm2/m128 and xmm1.
3-36

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

INSTRUCTION SET REFERENCE

ANDPS—Bitwise Logical AND of Packed Single-Precision
Floating-Point Values (Continued)

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
3-37

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Description

Inverts the bits of the two packed double-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the two packed double-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

Operation

DEST[127-0] ← (NOT(DEST[127-0])) BitwiseAND (SRC[127-0]);

Intel C/C++ Compiler Intrinsic Equivalent

Opcode Instruction Description

66 0F 55 /r ANDNPD xmm1, xmm2/m128 Bitwise logical AND NOT of xmm2/m128 and xmm1.
3-38

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

INSTRUCTION SET REFERENCE

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values (Continued)

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-39

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Description

Inverts the bits of the four packed single-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the four packed single-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

Operation

DEST[127-0] ← (NOT(DEST[127-0])) BitwiseAND (SRC[127-0]);

Intel C/C++ Compiler Intrinsic Equivalent

Opcode Instruction Description

0F 55 /r ANDNPS xmm1, xmm2/m128 Bitwise logical AND NOT of xmm2/m128 and xmm1.
3-40

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

INSTRUCTION SET REFERENCE

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values (Continued)

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-41

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand can be a word
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the privilege level of
the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the application program’s code segment is

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16
3-42

placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the stack following a procedure call.)

See “Checking Caller Access Privileges” in Chapter 4 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information about the use of this instruction.

Operation

IF DEST[RPL) < SRC[RPL)
THEN

ZF ← 1;
DEST[RPL) ← SRC[RPL);

ELSE
ZF ← 0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is set to 0.

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The ARPL instruction is not recognized in real-address mode.
3-43

Virtual-8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual-8086 mode.

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified the
second operand (bounds operand). The array index is a signed integer located in a register. The
bounds operand is a memory location that contains a pair of signed doubleword-integers (when
the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size
attribute is 16). The first doubleword (or word) is the lower bound of the array and the second
doubleword (or word) is the upper bound of the array. The array index must be greater than or
equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes.
If the index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When
a this exception is generated, the saved return instruction pointer points to the BOUND
instruction.)

Opcode Instruction Description

62 /r BOUND r16, m16&16 Check if r16 (array index) is within bounds specified by
m16&16

62 /r BOUND r32, m32&32 Check if r32 (array index) is within bounds specified by
m32&32
3-44

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation

IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)
(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected

None.

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.
3-45

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32
3-46

ELSE
ZF ← 0;
temp ← 0;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-47

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32
3-48

ELSE
ZF ← 0;
temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-49

INSTRUCTION SET REFERENCE

BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits
24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is
provided for converting little-endian values to big-endian format and vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

IA-32 Architecture Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486
processor family. For compatibility with this instruction, include functionally equivalent
code for execution on Intel processors earlier than the Intel486 processor family.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
3-50

Operation

TEMP ← DEST
DEST[7..0] ← TEMP(31..24]
DEST[15..8] ← TEMP(23..16]
DEST[23..16] ← TEMP(15..8]
DEST[31..24] ← TEMP(7..0]

Flags Affected

None.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand) and stores the value of the bit in
the CF flag. The bit base operand can be a register or a memory location; the bit offset operand
can be a register or an immediate value. If the bit base operand specifies a register, the instruc-
tion takes the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively (see Figure 3-1). If the bit
base operand specifies a memory location, it represents the address of the byte in memory that
contains the bit base (bit 0 of the specified byte) of the bit string (see Figure 3-2). The offset
operand then selects a bit position within the range −231 to 231 − 1 for a register offset and 0 to
31 for an immediate offset.

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag
3-51

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The processor will ignore the
high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation

CF ← Bit(BitBase, BitOffset)

INSTRUCTION SET REFERENCE

BT—Bit Test (Continued)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
3-52

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
3-53

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
3-54

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
3-55

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
3-56

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value. If the bit base
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register,
respectively (see Figure 3-1). If the bit base operand specifies a memory location, it represents
the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the
bit string (see Figure 3-2). The offset operand then selects a bit position within the range −231 to
231 − 1 for a register offset and 0 to 31 for an immediate offset.

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set
3-57

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
3-58

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CALL—Call Procedure

Description

Saves procedure linking information on the stack and branches to the procedure (called proce-
dure) specified with the destination (target) operand. The target operand specifies the address of
the first instruction in the called procedure. This operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

Opcode Instruction Description

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in r/m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in r/m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32
3-59

• Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

• Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using Call and RET” in Chapter 6 of
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for additional information
on near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which contains the offset of the instruction following the CALL instruction) onto the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified with the target operand. The target operand specifies either an
absolute offset in the code segment (that is an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in
the EIP register, which points to the instruction following the CALL instruction). The CS
register is not changed on near calls.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. (When accessing an absolute offset indirectly using the stack
pointer [ESP] as a base register, the base value used is the value of the ESP before the instruction
executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the
3-60

pointer method, the segment and offset of the called procedure is encoded in the instruction,
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

• Far call to the same privilege level.

• Far call to a different privilege level (inter-privilege level call).

• Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruction
is loaded into the EIP register.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Note that a call gate (described in the next paragraph) can also be used to perform far call to a
code segment at the same privilege level. Using this mechanism provides an extra level of indi-
rection and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand iden-
tifies the call gate. Here again, the target operand can specify the call gate segment selector
either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location
(m16:16 or m16:32). The processor obtains the segment selector for the new code segment and
the new instruction pointer (offset) from the call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor
switches to the stack for the privilege level of the called procedure. The segment selector for the
new stack segment is specified in the TSS for the currently running task. The branch to the new
code segment occurs after the stack switch. (Note that when using a call gate to perform a far
call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, an
(optional) set of parameters from the calling procedures stack, and the segment selector and
instruction pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.) Finally, the processor branches to
3-61

the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset in the target operand is ignored.) The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into EIP register so that
the task begins executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. See Chapter 6, Task Management, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3, for detailed information on the mechanics of a
task switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old
tasks TSS selector. Code is expected to suspend this nested task by executing an IRET instruc-
tion, which, because the NT flag is set, will automatically use the previous task link to return to
the calling task. (See “Task Linking” in Chapter 6 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on nested tasks.) Switching tasks with the
CALL instruction differs in this regard from the JMP instruction which does not set the NT flag
and therefore does not expect an IRET instruction to suspend the task.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far call is from a 32-bit code
segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-
bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset is saved. Also, the call should be made using a 16-bit call gate so
that 16-bit values will be pushed on the stack. See Chapter 17, Mixing 17-Bit and 32-Bit Code,
in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more information
on making calls between 16-bit and 32-bit code segments.

Operation

IF near call
THEN IF near relative call

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← EIP + DEST; (* DEST is rel32 *)
3-62

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;

ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:

FI;

IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
3-63

THEN #GP(new code segment selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST[offset);

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST[offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF stack not large enough for return address THEN #SS(0); FI;
tempEIP ← DEST[offset)
IF OperandSize=16

THEN
3-64

tempEIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

FI;
END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); FI;

Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
3-65

newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector’s RPL ≠ DPL of code segment

OR stack segment DPL ≠ DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
3-66

Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL) ← CPL

END;

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector);
FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
3-67

FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code segment
limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.
3-68

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.
3-69

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension (see Figure 7-6 in the IA-32
Intel Architecture Software Developer’s Manual, Volume 1). The CBW (convert byte to word)
instruction copies the sign (bit 7) in the source operand into every bit in the AH register. The
CWDE (convert word to doubleword) instruction copies the sign (bit 15) of the word in the AX
register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

Opcode Instruction Description

98 CBW AX ← sign-extend of AL

98 CWDE EAX ← sign-extend of AX
3-70

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX ← SignExtend(AX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quadword.
3-71

INSTRUCTION SET REFERENCE

CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF ← 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag
3-72

INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation

DF ← 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

Opcode Instruction Description

FC CLD Clear DF flag
3-73

None.

INSTRUCTION SET REFERENCE

CLFLUSH—Flush Cache Line

Description

Invalidates the cache line that contains the linear address specified with the source operand from
all levels of the processor cache hierarchy (data and instruction). The invalidation is broadcast
throughout the cache coherence domain. If, at any level of the cache hierarchy, the line is incon-
sistent with memory (dirty) it is written to memory before invalidation. The source operand is a
byte memory location.

The availability of the CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH
(bit 19 of the EDX register, see Section , CPUID—CPU Identification). The aligned cache line
size affected is also indicated with the CPUID instruction (bits 8 through 15 of the EBX register
when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of
this instruction. It should be noted that processors are free to speculatively fetch and cache data
from system memory regions assigned a memory-type allowing for speculative reads (such as,

Opcode Instruction Description

0F AE /7 CLFLUSH m8 Flushes cache line containing m8.
3-74

the WB, WC, WT memory types). PREFETCHh instructions can be used to provide the
processor with hints for this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a
CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by
any other fencing or serializing instructions or by another CLFLUSH instruction. For example,
software can use an MFENCE instruction to insure that previous stores are included in the write-
back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission
checking and faults associated with a byte load (and in addition, a CLFLUSH instruction is
allowed to flush a linear address in an execute-only segment). Like a load, the CLFLUSH
instruction sets the A bit but not the D bit in the page tables.

The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has
its own CPUID feature flag, it can be implemented in IA-32 processors that do not include the
SSE2 extensions. Also, detecting the presence of the SSE2 extensions with the CPUID instruc-
tion does not guarantee that the CLFLUSH instruction is implemented in the processor.

Operation

Flush_Cache_Line(SRC)

INSTRUCTION SET REFERENCE

CLFLUSH—Cache Line Flush (Continued)

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH void_mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID feature flag CLFSH is 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#UD If CPUID feature flag CLFSH is 0.
3-75

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CLI — Clear Interrupt Flag

Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS
register. No other flags are affected. Clearing the IF flag causes the processor to ignore maskable
external interrupts. The IF flag and the CLI and STI instruction have no affect on the generation
of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 3-5 indicates the action of the CLI instruction depending on the processor operating mode
and the CPL/IOPL of the running program or procedure.

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared

Table 3-5. Decision Table for CLI Results
3-76

PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0
1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0
1 1 < 3 X X X 0 GP Fault

X = This setting has no impact.

INSTRUCTION SET REFERENCE

CLI — Clear Interrupt Flag (Continued)

Operation
IF PE = 0

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF VM = 0;

THEN
IF IOPL ≥ CPL

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF ((IOPL < CPL) AND (CPL < 3) AND (PVI = 1))

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;
3-77

ELSE
IF IOPL = 3

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF (IOPL < 3) AND (VME = 1)

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

FI;
FI;

INSTRUCTION SET REFERENCE

CLI — Clear Interrupt Flag (Continued)

Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less
than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS register are unaf-
fected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions
3-78

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

INSTRUCTION SET REFERENCE

CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in the
section titled “Control Registers” in Chapter 2 of the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about this flag.

Operation

CR0(TS) ← 0;

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0
3-79

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions

#GP(0)

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0)

INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF ← NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)

Opcode Instruction Description

F5 CMC Complement CF flag
3-80

None.

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 /r CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 /r CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 /r CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 /r CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 /r CMOVB r16, r/m16 Move if below (CF=1)

0F 42 /r CMOVB r32, r/m32 Move if below (CF=1)

0F 46 /r CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 /r CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 /r CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 /r CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 /r CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 /r CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F /r CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F /r CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D /r CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D /r CMOVGE r32, r/m32 Move if greater or equal (SF=OF)
3-81

0F 4C /r CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C /r CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E /r CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E /r CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 /r CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 /r CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 /r CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 /r CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 /r CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 /r CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 /r CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 /r CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 /r CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 /r CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 /r CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 /r CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E /r CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E /r CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C /r CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C /r CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D /r CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D /r CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F /r CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F /r CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

Opcode Instruction Description

0F 41 /r CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 /r CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B /r CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B /r CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 /r CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 /r CMOVNS r32, r/m32 Move if not sign (SF=0)

0F q5 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 /r CMOVO r16, r/m16 Move if overflow (OF=1)

0F 40 /r CMOVO r32, r/m32 Move if overflow (OF=1)

0F 4A /r CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A /r CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A /r CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B /r CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B /r CMOVPO r32, r/m32 Move if parity odd (PF=0)
3-82

Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CMOVcc instruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode 0F 47H.

0F 48 /r CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 /r CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 /r CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 /r CMOVZ r32, r/m32 Move if zero (ZF=1)

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions were introduced in the P6 family processors; however, these instruc-
tions may not be supported by all IA-32 processors. Software can determine if the CMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter).

Operation

temp ← SRC
IF condition TRUE

THEN
DEST ← temp

FI;

Flags Affected

None.

Protected Mode Exceptions
3-83

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-84

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32
3-85

Description

Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi-
tion Codes, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, shows the
relationship of the status flags and the condition codes.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
3-86

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CMPPD—Compare Packed Double-Precision Floating-Point Values

Description

Performs a SIMD compare of the two packed double-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false). The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. The comparison predicate operand is an 8-bit immediate the
first 3 bits of which define the type of comparison to be made (see Table 3-6); bits 4 through 7
of the immediate are reserved.

Opcode Instruction Description

66 0F C2 /r ib CMPPD xmm1, xmm2/m128, imm8 Compare packed double-precision floating-
point values in xmm2/m128 and xmm1 using
imm8 as comparison predicate.

Table 3-6. Comparison Predicate for CMPPD and CMPPS Instructions
3-87

Predi-
cate

imm8
Encod
-ing Description

Relation where:
A Is 1st Operand
B Is 2nd Operand

Emula-
tion

Result if
NaN
Operand

QNaN Oper-
and Signals
Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap
Operands,
Use LT

False Yes

Greater-than-or-equal A ≥ B Swap
Operands,
Use LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes

NLE 110B Not-less-than-or-
equal

NOT(A ≤ B) True Yes

Not-greater-than NOT(A > B) Swap
Operands,
Use NLT

True Yes

Not-greater-than-or-
equal

NOT(A ≥ B) Swap
Operands,
Use NLE

True Yes

ORD 111B Ordered A , B = Ordered False No

INSTRUCTION SET REFERENCE

CMPPD—Compare Packed Double-Precision Floating-Point Values
(Continued)

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate an exception, because a mask of all 0s corresponds to a
floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that the processor does not implement the greater-than, greater-than-or-equal, not-greater-
than, and not-greater-than-or-equal relations. These comparisons can be made either by using
the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the program must
swap the operands (copying registers when necessary to protect the data that will now be in the
destination), and then perform the compare using a different predicate. The predicate to be used
for these emulations is listed in Table 3-6 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPD instruction.

:

3-88

The greater-than relations that the processor does not implement require more than one instruc-
tion to emulate in software and therefore should not be implemented as pseudo-ops. (For these,
the programmer should reverse the operands of the corresponding less than relations and use
move instructions to ensure that the mask is moved to the correct destination register and that
the source operand is left intact.)

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

INSTRUCTION SET REFERENCE

CMPPD—Compare Packed Double-Precision Floating-Point Values
(Continued)

Operation

CASE (COMPARISON PREDICATE) OF
0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;

4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[63-0] OP SRC[63-0];
CMP1 ← DEST[127-64] OP SRC[127-64];
IF CMP0 = TRUE

THEN DEST[63-0] ← FFFFFFFFFFFFFFFFH
ELSE DEST[63-0] ← 0000000000000000H; FI;
3-89

IF CMP1 = TRUE
THEN DEST[127-64] ← FFFFFFFFFFFFFFFFH
ELSE DEST[127-64] ← 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPD for equality __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than __m128d _mm_cmplt_pd(__m128d a, __m128d b)

CMPPD for less-than-or-equal __m128d _mm_cmple_pd(__m128d a, __m128d b)

CMPPD for greater-than __m128d _mm_cmpgt_pd(__m128d a, __m128d b)

CMPPD for greater-than-or-equal __m128d _mm_cmpge_pd(__m128d a, __m128d b)

CMPPD for inequality __m128d _mm_cmpneq_pd(__m128d a, __m128d b)

CMPPD for not-less-than __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than __m128d _mm_cmpngt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than-or-equal __m128d _mm_cmpnge_pd(__m128d a, __m128d b)

CMPPD for ordered __m128d _mm_cmpord_pd(__m128d a, __m128d b)

CMPPD for unordered __m128d _mm_cmpunord_pd(__m128d a, __m128d b)

CMPPD for not-less-than-or-equal __m128d _mm_cmpnle_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

INSTRUCTION SET REFERENCE

CMPPD—Compare Packed Double-Precision Floating-Point Values
(Continued)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment. #PF(fault-code) For a page
fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-90

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

CMPPD—Compare Packed Double-Precision Floating-Point Values
(Continued)

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-91

INSTRUCTION SET REFERENCE

CMPPS—Compare Packed Single-Precision Floating-Point Values

Description

Performs a SIMD compare of the four packed single-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false). The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. The comparison predicate operand is an 8-bit immediate the
first 3 bits of which define the type of comparison to be made (see Table 3-6); bits 4 through 7
of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

Opcode Instruction Description

0F C2 /r ib CMPPS xmm1, xmm2/m128, imm8 Compare packed single-precision floating-point
values in xmm2/mem and xmm1 using imm8 as
comparison predicate.
3-92

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 (such as the greater-than, greater-than-or-equal, not-
greater-than, and not-greater-than-or-equal relations) can be made only through software emula-
tion. For these comparisons the program must swap the operands (copying registers when neces-
sary to protect the data that will now be in the destination), and then perform the compare using
a different predicate. The predicate to be used for these emulations is listed in Table 3-6 under
the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPS instruction:

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7

INSTRUCTION SET REFERENCE

CMPPS—Compare Packed Single-Precision Floating-Point Values
(Continued)

The greater-than relations not implemented by the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation

CASE (COMPARISON PREDICATE) OF
0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NE;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
3-93

EASC
CMP0 ← DEST[31-0] OP SRC[31-0];
CMP1 ← DEST[63-32] OP SRC[63-32];
CMP2 ← DEST [95-64] OP SRC[95-64];
CMP3 ← DEST[127-96] OP SRC[127-96];
IF CMP0 = TRUE

THEN DEST[31-0] ← FFFFFFFFH
ELSE DEST[31-0] ← 00000000H; FI;

IF CMP1 = TRUE
THEN DEST[63-32] ← FFFFFFFFH
ELSE DEST[63-32] ← 00000000H; FI;

IF CMP2 = TRUE
THEN DEST95-64] ← FFFFFFFFH
ELSE DEST[95-64] ← 00000000H; FI;

IF CMP3 = TRUE
THEN DEST[127-96] ← FFFFFFFFH
ELSE DEST[127-96] ← 00000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPS for equality __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than __m128 _mm_cmplt_ps(__m128 a, __m128 b)

CMPPS for less-than-or-equal __m128 _mm_cmple_ps(__m128 a, __m128 b)

CMPPS for greater-than __m128 _mm_cmpgt_ps(__m128 a, __m128 b)

CMPPS for greater-than-or-equal __m128 _mm_cmpge_ps(__m128 a, __m128 b)

INSTRUCTION SET REFERENCE

CMPPS—Compare Packed Single-Precision Floating-Point Values
(Continued)

CMPPS for inequality __m128 _mm_cmpneq_ps(__m128 a, __m128 b)

CMPPS for not-less-than __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than __m128 _mm_cmpngt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than-or-equal __m128 _mm_cmpnge_ps(__m128 a, __m128 b)

CMPPS for ordered __m128 _mm_cmpord_ps(__m128 a, __m128 b)

CMPPS for unordered __m128 _mm_cmpunord_ps(__m128 a, __m128 b)

CMPPS for not-less-than-or-equal __m128 _mm_cmpnle_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
3-94

GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

INSTRUCTION SET REFERENCE

CMPPS—Compare Packed Single-Precision Floating-Point Values
(Continued)

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
3-95

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the

Opcode Instruction Description

A6 CMPS m8, m8 Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m16, m16 Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m32, m32 Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSD Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly
3-96

EFLAGS register according to the results. Both the source operands are located in memory. The
address of the first source operand is read from either the DS:ESI or the DS:SI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The address
of the second source operand is read from either the ES:EDI or the ES:DI registers (again
depending on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the CMPS
mnemonic) allows the two source operands to be specified explicitly. Here, the source operands
should be symbols that indicate the size and location of the source values. This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbols must specify the correct type (size)
of the operands (bytes, words, or doublewords), but they do not have to specify the correct loca-
tion. The locations of the source operands are always specified by the DS:(E)SI and ES:(E)DI
registers, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI and ES:(E)DI registers are assumed by the processor
to specify the location of the source operands. The size of the source operands is selected with
the mnemonic: CMPSB (byte comparison), CMPSW (word comparison), or CMPSD (double-
word comparison).

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
(Continued)

After the comparison, the (E)SI and (E)DI registers increment or decrement automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI and
(E)DI register increment; if the DF flag is 1, the (E)SI and (E)DI registers decrement.) The regis-
ters increment or decrement by 1 for byte operations, by 2 for word operations, or by 4 for
doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

temp ←SRC1 − SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
3-97

THEN
(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
(Continued)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
3-98

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CMPSD—Compare Scalar Double-Precision Floating-Point Values

Description

Compares the low double-precision floating-point values in the source operand (second
operand) and the destination operand (first operand) and returns the results of the comparison to
the destination operand. The comparison predicate operand (third operand) specifies the type of
comparison performed. The comparison result is a quadword mask of all 1s (comparison true)
or all 0s (comparison false). The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The result is stored in the low quadword
of the destination operand; the high quadword remains unchanged. The comparison predicate
operand is an 8-bit immediate the first 3 bits of which define the type of comparison to be made
(see Table 3-6); bits 4 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

Opcode Instruction Description

F2 0F C2 /r ib CMPSD xmm1, xmm2/m64, imm8 Compare low double-precision floating-point
value in xmm2/m64 and xmm1 using imm8 as
comparison predicate.
3-99

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-6
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSD instruction.

.

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7

INSTRUCTION SET REFERENCE

CMPSD—Compare Scalar Double-Precision Floating-Point Values
(Continued)

The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation

CASE (COMPARISON PREDICATE) OF
0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
3-100

DEFAULT: Reserved;
CMP0 ← DEST[63-0] OP SRC[63-0];
IF CMP0 = TRUE

THEN DEST[63-0] ← FFFFFFFFFFFFFFFFH
ELSE DEST[63-0] ← 0000000000000000H; FI;

* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalents

CMPSD for equality __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than __m128d _mm_cmplt_sd(__m128d a, __m128d b)

CMPSD for less-than-or-equal __m128d _mm_cmple_sd(__m128d a, __m128d b)

CMPSD for greater-than __m128d _mm_cmpgt_sd(__m128d a, __m128d b)

CMPSD for greater-than-or-equal __m128d _mm_cmpge_sd(__m128d a, __m128d b)

CMPSD for inequality __m128d _mm_cmpneq_sd(__m128d a, __m128d b)

CMPSD for not-less-than __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than __m128d _mm_cmpngt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than-or-equal __m128d _mm_cmpnge_sd(__m128d a, __m128d b)

CMPSD for ordered __m128d _mm_cmpord_sd(__m128d a, __m128d b)

CMPSD for unordered __m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSD for not-less-than-or-equal __m128d _mm_cmpnle_sd(__m128d a, __m128d b)

INSTRUCTION SET REFERENCE

CMPSD—Compare Scalar Double-Precision Floating-Point Values
(Continued)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-101

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

CMPSD—Compare Scalar Double-Precision Floating-Point Values
(Continued)

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-102

INSTRUCTION SET REFERENCE

CMPSS—Compare Scalar Single-Precision Floating-Point Values

Description

Compares the low single-precision floating-point values in the source operand (second operand)
and the destination operand (first operand) and returns the results of the comparison to the desti-
nation operand. The comparison predicate operand (third operand) specifies the type of compar-
ison performed. The comparison result is a doubleword mask of all 1s (comparison true) or all
0s (comparison false). The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. The result is stored in the low doubleword of the
destination operand; the 3 high-order doublewords remain unchanged. The comparison predi-
cate operand is an 8-bit immediate the first 3 bits of which define the type of comparison to be
made (see Table 3-6); bits 4 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN

Opcode Instruction Description

F3 0F C2 /r ib CMPSS xmm1, xmm2/m32, imm8 Compare low single-precision floating-point
value in xmm2/m32 and xmm1 using imm8 as
comparison predicate.
3-103

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-point
value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-6
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSS instruction.

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

INSTRUCTION SET REFERENCE

CMPSS—Compare Scalar Single-Precision Floating-Point Values
(Continued)

The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation

CASE (COMPARISON PREDICATE) OF
0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
3-104

DEFAULT: Reserved;
CMP0 ← DEST[31-0] OP SRC[31-0];
IF CMP0 = TRUE

THEN DEST[31-0] ← FFFFFFFFH
ELSE DEST[31-0] ← 00000000H; FI;

* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalents

CMPSS for equality __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than __m128 _mm_cmplt_ss(__m128 a, __m128 b)

CMPSS for less-than-or-equal __m128 _mm_cmple_ss(__m128 a, __m128 b)

CMPSS for greater-than __m128 _mm_cmpgt_ss(__m128 a, __m128 b)

CMPSS for greater-than-or-equal __m128 _mm_cmpge_ss(__m128 a, __m128 b)

CMPSS for inequality __m128 _mm_cmpneq_ss(__m128 a, __m128 b)

CMPSS for not-less-than __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than __m128 _mm_cmpngt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than-or-equal __m128 _mm_cmpnge_ss(__m128 a, __m128 b)

CMPSS for ordered __m128 _mm_cmpord_ss(__m128 a, __m128 b)

CMPSS for unordered __m128 _mm_cmpunord_ss(__m128 a, __m128 b)

CMPSS for not-less-than-or-equal __m128 _mm_cmpnle_ss(__m128 a, __m128 b)

INSTRUCTION SET REFERENCE

CMPSS—Compare Scalar Single-Precision Floating-Point Values
(Continued)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-105

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

CMPSS—Compare Scalar Single-Precision Floating-Point Values
(Continued)

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-106

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with
the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded
into r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is
loaded into r/m16. Else, clear ZF and load r/m16 into AX

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is
loaded into r/m32. Else, clear ZF and load r/m32 into EAX
3-107

processor never produces a locked read without also producing a locked write.)

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST

THEN
ZF ← 1
DEST ← SRC

ELSE
ZF ← 0
accumulator ← DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
3-108

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.
3-109

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium processors.

Operation

IF (EDX:EAX = DEST)
ZF ← 1
DEST ← ECX:EBX

ELSE
ZF ← 0
EDX:EAX ← DEST

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.
3-110

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

COMISD—Compare Scalar Ordered Double-Precision Floating-
Point Values and Set EFLAGS

Description

Compares the double-precision floating-point values in the low quadwords of source operand 1
(first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the
EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF,
SF and AF flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit
memory location.

The COMISD instruction differs from the UCOMISD instruction in that it signals a SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or

Opcode Instruction Description

66 0F 2F /r COMISD xmm1, xmm2/m64 Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
3-111

SNaN. The UCOMISD instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

Operation

RESULT ← OrderedCompare(DEST[63-0] <> SRC[63-0]) {
* Set EFLAGS *CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalents

int_mm_comieq_sd(__m128d a, __m128d b)

int_mm_comilt_sd(__m128d a, __m128d b)

int_mm_comile_sd(__m128d a, __m128d b)

int_mm_comigt_sd(__m128d a, __m128d b)

int_mm_comige_sd(__m128d a, __m128d b)

int_mm_comineq_sd(__m128d a, __m128d b)

INSTRUCTION SET REFERENCE

COMISD—Compare Scalar Ordered Double-Precision Floating-
Point Values and Set EFLAGS (Continued)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-112

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

COMISD—Compare Scalar Ordered Double-Precision Floating-
Point Values and Set EFLAGS (Continued)

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-113

INSTRUCTION SET REFERENCE

COMISS—Compare Scalar Ordered Single-Precision Floating-
Point Values and Set EFLAGS

Description

Compares the single-precision floating-point values in the low doublewords of source operand
1 (first operand) and the source operand 2 (second operand), and sets the ZF, PF, and CF flags
in the EFLAGS register according to the result (unordered, greater than, less than, or equal). The
OF, SF and AF flags in the EFLAGS register are set to 0. The unordered result is returned if
either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit
memory location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or

Opcode Instruction Description

0F 2F /r COMISS xmm1, xmm2/m32 Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
3-114

SNaN. The UCOMISS instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

Operation

RESULT ← OrderedCompare(SRC1[31-0] <> SRC2[31-0]) {
* Set EFLAGS *CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalents

int_mm_comieq_ss(__m128 a, __m128 b)

int_mm_comilt_ss(__m128 a, __m128 b)

int_mm_comile_ss(__m128 a, __m128 b)

int_mm_comigt_ss(__m128 a, __m128 b)

int_mm_comige_ss(__m128 a, __m128 b)

int_mm_comineq_ss(__m128 a, __m128 b)

INSTRUCTION SET REFERENCE

COMISS—Compare Scalar Ordered Single-Precision Floating-
Point Values and Set EFLAGS (Continued)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-115

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

INSTRUCTION SET REFERENCE

COMISS—Compare Scalar Ordered Single-Precision Floating-
Point Values and Set EFLAGS (Continued)

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-116

INSTRUCTION SET REFERENCE

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register before the
instruction is executed. Table 3-7 shows the information returned, depending on the initial value
loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a
software procedure can set and clear this flag, the processor executing the procedure supports
the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic informa-
tion and extended function information. Basic information is returned by entering an input value
of from 0 to 3 in the EAX register depending on the IA-32 processor type; extended function

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information
to the EAX, EBX, ECX, and EDX registers, according to
the input value entered initially in the EAX register
3-117

information is returned by entering an input value of from 80000000H to 80000004H. The
extended function CPUID information was introduced in the Pentium 4 processor and is not
available in earlier IA-32 processors. Table 3-8 shows the maximum input value that the
processor recognizes for the CPUID instruction for basic information and for extended function
information, for each family of IA-32 processors on which the CPUID instruction is imple-
mented.

If a higher value than is shown in Table 3-7 is entered for a particular processor, the information
for the highest useful basic information value is returned. For example, if an input value of 5 is
entered in EAX for a Pentium 4 processor, the information for an input value of 2 is returned.
The exception to this rule is the input values that return extended function information
(currently, the values 80000000H through 80000004H). For a Pentium 4 processor, entering an
input value of 80000005H or above, returns the information for an input value of 2.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed before the next instruction is fetched and
executed (see “Serializing Instructions” in Chapter 7 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3).

When the input value in the EAX register is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register for returning basic CPUID information (see Table
3-8). A vendor identification string is returned in the EBX, EDX, and ECX registers. For Intel
processors, the vendor identification string is “GenuineIntel” as follows:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)

EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)

ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-7. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-8).
“Genu”
“ntel”
“ineI”

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size. (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor.
Bits 31-24: Local APIC ID
Extended Feature Information (see Figure 3-4 and Table 3-10)
Feature Information (see Figure 3-5 and Table 3-11)

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
3-118

3H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see Table
3-8).
Reserved.
Reserved.
Reserved.

80000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
Reserved.)
Reserved.
Reserved.
Reserved.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-7. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

Table 3-8. Highest CPUID Source Operand for IA-32 Processors

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II
Processors, Intel® Celeron™

02H Not Implemented
3-119

Processors

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

When the input value is 1, the processor returns version information in the EAX register (see
Figure 3-3). The version information consists of an IA-32 processor family identifier, a model
identifier, a stepping ID, and a processor type. The model, family, and processor type for the first
processor in the Intel Pentium 4 family is as follows:

• Model—0000B

• Family—1111B

• Processor Type—00B

The available processor types are given in Table 3-9. Intel releases information on stepping IDs
as needed.

31 12 11 8 7 4 3 0

EAX

1314

Processor Type

ModelFamily
Stepping

ID

15

Model
ExtendedExtended

Family

1619202728
3-120

NOTE:

* Not applicable to Intel486 processors.

If the values in the family and/or model fields reach or exceed FH, the CPUID instruction will
generate two additional fields in the EAX register: the extended family field and the extended
model field. Here, a value of FH in either the model field or the family field indicates that the
extended model or family field, respectively, is valid. Family and model numbers beyond FH
range from 0FH to FFH, with the least significant hexadecimal digit always FH.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618)
and Chapter 13 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more
information on identifying earlier IA-32 processors.

Figure 3-3. Version Information in the EAX Register

Table 3-9. Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor* 10B

Intel reserved. 11B

Family (1111B for the Pentium 4 Processor Family)
Model (Beginning with 0000B)

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to the EBX
register:

• Brand index (low byte of EBX)—this number provides an entry into a brand string table
that contains brand strings for IA-32 processors. See “Brand Identification” later in the
description of this instruction for information about the intended use of brand indices. This
field was introduced in the Pentium® III Xeon™ processors.

• CLFLUSH instruction cache line size (second byte of EBX)—this number indicates the
size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This field
was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX)—this number is the 8-bit ID that is assigned to the
local APIC on the processor during power up. This field was introduced in the Pentium 4
processor.

When the input value in EAX is 1, feature information is also returned in ECX and EDX. Figure
3-4 and Table 3-10 show encodings for the ECX register. Figure 3-5 and Table 3-11 show encod-
ings for EDX. For all the feature flags currently returned in ECX and EDX, a 1 indicates that the
feature is supported. Software should identify Intel as the vendor to properly interpret the feature
3-121

flags. (Software should not depend on a 1 indicating the presence of a feature for future feature
flags.)

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-10. Extended Feature Flags Returned in ECX Register

Figure 3-4. Extended Feature Flags Returned in ECX Register

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2

Reserv ed

EST — Enhanced Intel Speedstep Technology
3-122

Bit # Mnemonic Description

7 EST Enhanced Intel® SpeedStep® Technology. A value of 1 indicates the processor
supports the Enhanced Intel SpeedStep technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates the processor supports the new
Theraml Monitor 2 technology.

10 CNXT-ID Context ID. A value of 1 indicates the L1 data cache mode can be set to either
adaptive mode or shared mode. A value of 0 indicate this feature is not supported.
See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context
Mode) for more details.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

31

CMOV—Conditional Move/Compare Instruction

15 1314 12 9 8 7 6 5 4 3 2 1 0

EDX

11 101623 1718192021222425262728

SS—Self Snoop
SSE2—SSE2 Extensions
SSE—SSE Extensions
FXSR—FXSAVE/FXRSTOR
MMX—MMX Technology
ACPI—Thermal Monitor and Clock Ctrl
DS—Debug Store
CLFSH—CFLUSH instruction
PSN—Processor Serial Number
PSE-36 — Page Size Extension
PAT—Page Attribute Table

30 29

TM—Therm. Monitor

7

PBE—Pend. Brk. En.

HTT—Hyper-Threading Tech.
3-123

Figure 3-5. Feature Information in the EDX Register

APIC—APIC on Chip
CX8—CMPXCHG8B Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR—RDMSR and WRMSR Support
TSC—Time Stamp Counter

MTRR—Memory Type Range Registers

MCA—Machine Check Architecture
PGE—PTE Global Bit

PSE—Page Size Extensions
DE—Debugging Extensions
VME—Virtual-8086 Mode Enhancement
FPU—x87 FPU on Chip

Reserved

SEP—SYSENTER and SYSEXIT

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-11. CPUID Feature Flags Returned in EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including
CR4.VME for controlling the feature, CR4.PVI for protected mode virtual
interrupts, software interrupt indirection, expansion of the TSS with the software
indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.
3-124

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2 Mbyte pages are supported instead of 4 Mbyte
pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined,
and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define the
model-specific implementations of machine-check error logging, reporting, and
processor shutdowns. Machine Check exception handlers may have to depend on
processor version to do model specific processing of the exception, or test for the
presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors permit
the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how many
variable MTRRs are supported, and whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to different
processes and need not be flushed. The CR4.PGE bit controls this feature.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-11. CPUID Feature Flags Returned in EDX Register (Contd.)

Bit # Mnemonic Description

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides
a compatible mechanism for error reporting in P6 family, Pentium 4, and Intel
Xeon processors, and future processors, is supported. The MCG_CAP MSR
contains feature bits describing how many banks of error reporting MSRs are
supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments
the Memory Type Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on a 4K granularity through a linear address.

17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
3-125

identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a
memory resident buffer. This feature is used by the branch trace store (BTS) and
precise event-based sampling (PEBS) facilities (see Chapter 15, Debugging and
Performance Monitoring, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored and
processor performance to be modulated in predefined duty cycles under software
control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context. Presence of
this bit also indicates that CR4.OSFXSR is available for an operating system to
indicate that it supports the FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions issued to
the bus

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-11. CPUID Feature Flags Returned in EDX Register (Contd.)

Bit # Mnemonic Description

28 HTT Hyper-Threading Technology. The processor supports Hyper-
ThreadingTechnology.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin
when the processor is in the stop-clock state (STPCLK# is asserted) to signal the
processor that an interrupt is pending and that the processor should return to
normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin
when the processor is in the stop-clock state (STPCLK# is asserted) to signal the
processor that an interrupt is pending and that the processor should return to
normal operation to handle the interrupt. Bit 10 (PBE enable) in the
3-126

When the input value is 2, the processor returns information about the processor’s internal
caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers
is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The first member of the family of Pentium 4
processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains
valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 3-12 shows the encoding of these descriptors. Note that the order of descriptors in
the EAX, EBX, ECX, and EDX registers is not defined; that is, specific bytes are not
designated to contain descriptors for specific cache or TLB types. The descriptors may
appear in any order.

IA32_MISC_ENABLE MSR enables this capability.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-12. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4K-Byte Pages, 4-way set associative, 32 entries

02H Instruction TLB: 4M-Byte Pages, 4-way set associative, 2 entries

03H Data TLB: 4K-Byte Pages, 4-way set associative, 64 entries

04H Data TLB: 4M-Byte Pages, 4-way set associative, 8 entries

06H 1st-level instruction cache: 8K Bytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16K Bytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8K Bytes, 2-way set associative, 32 byte line size

0CH 1st-level data cache: 16K Bytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512K Bytes, 4-way set associative, 64 byte line size, 128 byte
sector size

23H 3rd-level cache: 1M Bytes, 8-way set associative, 64 byte line size, 128 byte sector
3-127

size

25H 3rd-level cache: 2M Bytes, 8-way set associative, 64 byte line size, 128 byte sector
size

2CH 1st-level data cache: 32K Bytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32K Bytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level
cache

41H 2nd-level cache: 128K Bytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256K Bytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512K Bytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1M Byte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2M Byte, 4-way set associative, 32 byte line size

50H Instruction TLB: 4-KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4-KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4-KByte and 2-MByte or 4-MByte pages, 256 entries

5BH Data TLB: 4-KByte and 4-MByte pages, 64 entries

5CH Data TLB: 4-KByte and 4-MByte pages,128 entries

5DH Data TLB: 4-KByte and 4-MByte pages,256 entries

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-12. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value Cache or TLB Description

66H 1st-level data cache: 8KB, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16KB, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32KB, 4-way set associative, 64 byte line size

70H Trace cache: 12K-µop, 8-way set associative

71H Trace cache: 16K-µop, 8-way set associative

72H Trace cache: 32K-µop, 8-way set associative

78H 2nd-level cache: 1M Byte, 8-way set associative, 64byte line size

79H 2nd-level cache: 128KB, 8-way set associative, 64 byte line size, 128 byte sector
size

7AH 2nd-level cache: 256KB, 8-way set associative, 64 byte line size, 128 byte sector
size

7BH 2nd-level cache: 512KB, 8-way set associative, 64 byte line size, 128 byte sector
size
3-128

7CH 2nd-level cache: 1MB, 8-way set associative, 64 byte line size, 128 byte sector
size

7DH 2nd-level cache: 2M Byte, 8-way set associative, 64byte line size

82H 2nd-level cache: 256K Byte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512K Byte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1M Byte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2M Byte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512K Byte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1M Byte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4M-Byte Pages, 4-way set associative, 128 entries

B3H Data TLB: 4M-Byte Pages, 4-way set associative, 128 entries

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

The first member of the family of Pentium 4 processors will return the following information
about caches and TLBs when the CPUID instruction is executed with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

These values are interpreted as follows:

• The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— 50H—A 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte
pages.
3-129

— 5BH—A 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H—An 8-KByte 1st level data cache, 4-way set associative, with a 64-byte cache
line size.

• The descriptors in registers EBX and ECX are valid, but contain null descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

— 00H—Null descriptor.

— 70H—A 12-KByte 1st level code cache, 4-way set associative, with a 64-byte cache
line size.

— 7AH—A 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte
cache line size.

— 00H—Null descriptor.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Brand Identification

To facilitate brand identification of IA-32 processors with the CPUID instruction, two features
are provided: brand index and brand string.

The brand index was added to the CPUID instruction with the Pentium III Xeon processor and
will be included on all future IA-32 processors, including the Pentium 4 processors. The brand
index provides an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table, each brand
index is associate with an ASCII brand identification string that identifies the official Intel
family and model number of a processor (for example, “Intel Pentium III processor”).

When executed with a value of 1 in the EAX register, the CPUID instruction returns the brand
index to the low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index 0) in this
table is reserved, allowing for backward compatibility with processors that do not support the
brand identification feature. Table 3-13 shows those brand indices that currently have processor
brand identification strings associated with them.

It is recommended that (1) all reserved entries included in the brand identification table be asso-
3-130

ciated with a brand string that indicates that the index is reserved for future Intel processors and
(2) that software be prepared to handle reserved brand indices gracefully.

INSTRUCTION SET REFERENCE

Table 3-13. Mapping of Brand Indices and IA-32 Processor Brand Strings

Brand Index Brand String

0H This processor does not support the brand identification feature

01H Intel® Celeron® processor†

02H Intel® Pentium® III processor†

03H Intel® Pentium® III XeonTM processor; If processor signature = 000006B1h, then
“Intel® Celeron® processor”

04H Intel® Pentium® III processor

06H Mobile Intel® Pentium® III processor-M

07H Mobile Intel® Celeron® processor†

08H Intel® Pentium® 4 processor

09H Intel® Pentium® 4 processor

0AH Intel® Celeron® processor†

0BH Intel® XeonTM processor; If processor signature = 00000F13h, then “Intel® XeonTM
processor MP”

0CH Intel® XeonTM processor MP
3-131

Note
† Indicates versions of these processors that were introduced after the Pentium III Xeon processor.

The brand string feature is an extension to the CPUID instruction introduced in the Pentium 4
processors. With this feature, the CPUID instruction returns the ASCII brand identification
string and the maximum operating frequency of the processor to the EAX, EBX, ECX, and EDX
registers. (Note that the frequency returned is the maximum operating frequency that the
processor has been qualified for and not the current operating frequency of the processor.)

0EH Mobile Intel® Pentium® 4 processor-M; If processor signature = 00000F13h, then
“Intel® XeonTM processor”

0FH Mobile Intel® Celeron® processor†

13H Mobile Intel® Celeron® processor†

16H Intel® Pentium® M processor

17 – 255 Reserved for future processor

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

To use the brand string feature, the CPUID instructions must be executed three times, once with
an input value of 8000002H in the EAX register, and a second time an input value of 80000003,
and a third time with a value of 80000004H.

The brand string is architecturally defined to be 48 byte long: the first 47 bytes contain ASCII
characters and the 48th byte is defined to be null (0). The string may be right justified (with
leading spaces) for implementation simplicity. For each input value (EAX is 80000002H,
80000003H, or 80000004H), the CPUID instruction returns 16 bytes of the brand string to the
EAX, EBX, ECX, and EDX registers. Processor implementations may return less than the 47
ASCII characters, in which case the string will be null terminated and the processor will return
valid data for each of the CPUID input values of 80000002H, 80000003H, and 80000004H.

Table 3-14 shows the brand string that is returned by the first processor in the family of Pentium
4 processors.

NOTE

When a frequency is given in a brand string, it is the maximum qualified
frequency of the processor, not the actual frequency the processor is running
3-132

at.

The following procedure can be used for detection of the brand string feature:

1. Execute the CPUID instruction with input value in EAX of 80000000H.

2. If ((EAX_Return_Value) AND (80000000H) ≠ 0) then the processor supports the extended
CPUID functions and EAX contains the largest extended function input value supported.

3. If EAX_Return_Value ≥ 80000004H, then the CPUID instruction supports the brand string
feature.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

To identify an IA-32 processor using the CPUID instruction, brand identification software
should use the following brand identification techniques ordered by decreasing priority:

• Processor brand string

Table 3-14. Processor Brand String Returned with First Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H;

“ ”
“ ”
“ ”
“nI ”

80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H

“(let”
“P)R”
“itne”
“R(mu”

80000004H EAX = 20342029H;
EBX = 20555043H;
ECX = 30303531H
EDX = 007A484DH

“ 4)”
“ UPC”
“0051”
“\0zHM”
3-133

• Processor brand index and a software supplied brand string table.

• Table based mechanism using type, family, model, stepping, and cache information
returned by the CPUID instruction.

IA-32 Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any IA-
32 processor earlier than the Intel486 processor.

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0:

EAX ← highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[23:20] ← Extended Family;
EAX[31:24] ← Reserved;
EBX[7:0] ← Brand Index;
3-134

EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved;
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-4 *)
EDX ← Feature flags; (* See Figure 3-5 *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved *

BREAK;
EAX = 80000000H:

EAX ← highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

EAX = 80000001H:
EAX ← Extended Processor Signature and Feature Bits (*Currently Reserved*);
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000002H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000003H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000004H:
3-135

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← Reserved; (* undefined*)
EBX ← Reserved; (* undefined*)
ECX ← Reserved; (* undefined*)
EDX ← Reserved; (* undefined*)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

NOTE

In earlier IA-32 processors that do not support the CPUID instruction,
execution of the instruction results in an invalid opcode (#UD) exception
being generated.

INSTRUCTION SET REFERENCE

CVTDQ2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand). The
source operand can be an XMM register or a 64-bit memory location. The destination operand
is an XMM register. When the source operand is an XMM register, the packed integers are
located in the low quadword of the register.

Operation

DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63-32]);

Opcode Instruction Description

F3 0F E6 CVTDQ2PD xmm1, xmm2/m64 Convert two packed signed doubleword integers from
xmm2/m128 to two packed double-precision floating-
point values in xmm1.
3-136

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128di a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

CVTDQ2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-137

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTDQ2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description

Converts four packed signed doubleword integers in the source operand (second operand) to
four packed single-precision floating-point values in the destination operand (first operand). The
source operand can be an XMM register or a 128-bit memory location. The destination operand
is an XMM register. When a conversion is inexact, rounding is performed according to the
rounding control bits in the MXCSR register.

Operation

DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
DEST[63-32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63-32]);
DEST[95-64] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[95-64]);

Opcode Instruction Description

0F 5B /r CVTDQ2PS xmm1, xmm2/m128 Convert four packed signed doubleword integers
from xmm2/m128 to four packed single-precision
floating-point values in xmm1.
3-138

DEST[127-96] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PS __m128d _mm_cvtepi32_ps(__m128di a)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTDQ2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-139

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPD2DQ—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation

Opcode Instruction Description

F2 0F E6 CVTPD2DQ xmm1, xmm2/m128 Convert two packed double-precision floating-point
values from xmm2/m128 to two packed signed
doubleword integers in xmm1.
3-140

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2DQ __m128d _mm_cvtpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTPD2DQ—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-141

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPD2PI—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Description

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the

Opcode Instruction Description

66 0F 2D /r CVTPD2PI mm, xmm/m128 Convert two packed double-precision floating-point
values from xmm/m128 to two packed signed
doubleword integers in mm.
3-142

x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPD2PI instruction is executed.

Operation

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127-64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD1PI __m64 _mm_cvtpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPD2PI—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers (Continued)

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.
3-143

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPD2PS—Covert Packed Double-Precision Floating-Point
Values to Packed Single-Precision Floating-Point Values

Description

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed single-precision floating-point values in the destination operand (first
operand). The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the destination
operand, and the high quadword is cleared to all 0s. When a conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

Operation

DEST[31-0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_To_Single_Precision_

Opcode Instruction Description

66 0F 5A /r CVTPD2PS xmm1, xmm2/m128 Convert two packed double-precision floating-point
values in xmm2/m128 to two packed single-
precision floating-point values in xmm1.
3-144

Floating_Point(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2PS __m128d _mm_cvtpd_ps(__m128d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTPD2PS—Covert Packed Double-Precision Floating-Point
Values to Packed Single-Precision Floating-Point Values
(Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.
3-145

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPI2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand). The
source operand can be an MMX technology register or a 64-bit memory location. The destina-
tion operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPI2PD instruction is executed.

Operation

Opcode Instruction Description

66 0F 2A /r CVTPI2PD xmm, mm/m64 Convert two packed signed doubleword integers from
mm/mem64 to two packed double-precision floating-point
values in xmm.
3-146

DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTPI2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.
3-147

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two
packed single-precision floating-point values in the destination operand (first operand). The
source operand can be an MMX technology register or a 64-bit memory location. The destina-
tion operand is an XMM register. The results are stored in the low quadword of the destination
operand, and the high quadword remains unchanged. When a conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPI2PS instruction is executed.

Opcode Instruction Description

0F 2A /r CVTPI2PS xmm, mm/m64 Convert two signed doubleword integers from mm/m64 to two
single-precision floating-point values in xmm.
3-148

Operation

DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
DEST[63-32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63-32]);
* high quadword of destination remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PS __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE

CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values (Continued)

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.
3-149

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTPS2DQ—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description

Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation

Opcode Instruction Description

66 0F 5B /r CVTPS2DQ xmm1, xmm2/m128 Convert four packed single-precision floating-
point values from xmm2/m128 to four packed
signed doubleword integers in xmm1.
3-150

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63-32]);
DEST[95-64] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[95-64]);
DEST[127-96] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_cvtps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set.

INSTRUCTION SET REFERENCE

CVTPS2DQ—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers (Continued)

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.
3-151

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTPS2PD—Covert Packed Single-Precision Floating-Point
Values to Packed Double-Precision Floating-Point Values

Description

Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed double-precision floating-point values in the destination operand (first
operand). The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the packed
single-precision floating-point values are contained in the low quadword of the register.

Operation

DEST[63-0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Single_Precision_To_Double_Precision_

Floating_Point(SRC[63-32]);

Opcode Instruction Description

0F 5A /r CVTPS2PD xmm1, xmm2/m64 Convert two packed single-precision floating-point
values in xmm2/m64 to two packed double-precision
floating-point values in xmm1.
3-152

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

INSTRUCTION SET REFERENCE

CVTPS2PD—Covert Packed Single-Precision Floating-Point
Values to Packed Double-Precision Floating-Point Values
(Continued)

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-153

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTPS2PI—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description

Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Opcode Instruction Description

0F 2D /r CVTPS2PI mm, xmm/m64 Convert two packed single-precision floating-point values
from xmm/m64 to two packed signed doubleword
integers in mm.
3-154

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPS2PI instruction is executed.

Operation

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent

__m64 _mm_cvtps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE

CVTPS2PI—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers (Continued)

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
3-155

to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value
to Doubleword Integer

Description

Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 64-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the double-precision floating-point value
is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Opcode Instruction Description

F2 0F 2D /r CVTSD2SI r32, xmm/m64 Convert one double-precision floating-point value from
xmm/m64 to one signed doubleword integer r32.
3-156

Operation

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

INSTRUCTION SET REFERENCE

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value
to Doubleword Integer (Continued)

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-157

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSD2SS—Convert Scalar Double-Precision Floating-Point
Value to Scalar Single-Precision Floating-Point Value

Description

Converts a double-precision floating-point value in the source operand (second operand) to a
single-precision floating-point value in the destination operand (first operand). The source
operand can be an XMM register or a 64-bit memory location. The destination operand is an
XMM register. When the source operand is an XMM register, the double-precision floating-
point value is contained in the low quadword of the register. The result is stored in the low
doubleword of the destination operand, and the upper 3 doublewords are left unchanged. When
the conversion is inexact, the value returned is rounded according to the rounding control bits in
the MXCSR register.

Operation

Opcode Instruction Description

F2 0F 5A /r CVTSD2SS xmm1, xmm2/m64 Convert one double-precision floating-point value in
xmm2/m64 to one single-precision floating-point
value in xmm1.
3-158

DEST[31-0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63-0]);
* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent

CVTSD2SS __m128_mm_cvtsd_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

INSTRUCTION SET REFERENCE

CVTSD2SS—Convert Scalar Double-Precision Floating-Point
Value to Scalar Single-Precision Floating-Point Value (Continued)

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-159

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSI2SD—Convert Doubleword Integer to Scalar Double-
Precision Floating-Point Value

Description

Converts a signed doubleword integer in the source operand (second operand) to a double-preci-
sion floating-point value in the destination operand (first operand). The source operand can be
a general-purpose register or a 32-bit memory location. The destination operand is an XMM
register. The result is stored in the low quadword of the destination operand, and the high quad-
word left unchanged.

Operation

DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
* DEST[127-64] remains unchanged *;

Opcode Instruction Description

F2 0F 2A /r CVTSI2SD xmm, r/m32 Convert one signed doubleword integer from r/m32 to one
double-precision floating-point value in xmm.
3-160

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

CVTSI2SD—Convert Doubleword Integer to Scalar Double-
Precision Floating-Point Value (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-161

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSI2SS—Convert Doubleword Integer to Scalar Single-
Precision Floating-Point Value

Description

Converts a signed doubleword integer in the source operand (second operand) to a single-preci-
sion floating-point value in the destination operand (first operand). The source operand can be
a general-purpose register or a 32-bit memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and the upper
three doublewords are left unchanged. When a conversion is inexact, the value returned is
rounded according to the rounding control bits in the MXCSR register.

Operation

DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
* DEST[127-32] remains unchanged *;

Opcode Instruction Description

F3 0F 2A /r CVTSI2SS xmm, r/m32 Convert one signed doubleword integer from r/m32 to one
single-precision floating-point value in xmm.
3-162

Intel C/C++ Compiler Intrinsic Equivalent

__m128_mm_cvtsi32_ss(__m128d a, int b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

INSTRUCTION SET REFERENCE

CVTSI2SS—Convert Doubleword Integer to Scalar Single-
Precision Floating-Point Value (Continued)

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-163

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value
to Scalar Double-Precision Floating-Point Value

Description

Converts a single-precision floating-point value in the source operand (second operand) to a
double-precision floating-point value in the destination operand (first operand). The source
operand can be an XMM register or a 32-bit memory location. The destination operand is an
XMM register. When the source operand is an XMM register, the single-precision floating-point
value is contained in the low doubleword of the register. The result is stored in the low quadword
of the destination operand, and the high quadword is left unchanged.

Operation

DEST[63-0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31-0]);
* DEST[127-64] remains unchanged *;

Opcode Instruction Description

F3 0F 5A /r CVTSS2SD xmm1, xmm2/m32 Convert one single-precision floating-point value in
xmm2/m32 to one double-precision floating-point
value in xmm1.
3-164

Intel C/C++ Compiler Intrinsic Equivalent

CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

INSTRUCTION SET REFERENCE

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value
to Scalar Double-Precision Floating-Point Value (Continued)

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-165

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value
to Doubleword Integer

Description

Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 32-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Opcode Instruction Description

F3 0F 2D /r CVTSS2SI r32, xmm/m32 Convert one single-precision floating-point value from
xmm/m32 to one signed doubleword integer in r32.
3-166

Operation

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvtss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

INSTRUCTION SET REFERENCE

CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value
to Doubleword Integer (Continued)

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.
3-167

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Description

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the

Opcode Instruction Description

66 0F 2C /r CVTTPD2PI mm, xmm/m128 Convert two packer double-precision floating-point
values from xmm/m128 to two packed signed
doubleword integers in mm using truncation.
3-168

x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPD2PI instruction is executed.

Operation

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD1PI __m64 _mm_cvttpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

INSTRUCTION SET REFERENCE

CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers (Continued)

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions
3-169

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Operation

Opcode Instruction Description

66 0F E6 CVTTPD2DQ xmm1, xmm2/m128 Convert two packed double-precision floating-point
values from xmm2/m128 to two packed signed
doubleword integers in xmm1 using truncation.
3-170

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

INSTRUCTION SET REFERENCE

CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers (Continued)

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.
3-171

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Operation

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);

Opcode Instruction Description

F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 Convert four single-precision floating-point
values from xmm2/m128 to four signed
doubleword integers in xmm1 using truncation.
3-172

DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63-32]);
DEST[95-64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95-64]);
DEST[127-96] ← Convert_Single_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_cvttps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-173

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Description

Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Opcode Instruction Description

0F 2C /r CVTTPS2PI mm, xmm/m64 Convert two single-precision floating-point values from
xmm/m64 to two signed doubleword signed integers in
mm using truncation.
3-174

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPS2PI instruction is executed.

Operation

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent

__m64 _mm_cvttps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE

CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers (Continued)

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
3-175

to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

Description

Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 64-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the double-precision floating-point value
is contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Opcode Instruction Description

F2 0F 2C /r CVTTSD2SI r32, xmm/m64 Convert one double-precision floating-point value from
xmm/m64 to one signed doubleword integer in r32 using
truncation.
3-176

Operation

DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvttsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Doubleword Integer (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-177

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

Description

Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 32-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Opcode Instruction Description

F3 0F 2C /r CVTTSS2SI r32, xmm/m32 Convert one single-precision floating-point value from
xmm/m32 to one signed doubleword integer in r32 using
truncation.
3-178

Operation

DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvttss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer (Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-179

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size) by
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively.
The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit posi-
tion in the DX register (see Figure 7-6 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1). The CDQ instruction copies the sign (bit 31) of the value in the EAX
register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from a double-
word before doubleword division.

Opcode Instruction Description

99 CWD DX:AX ← sign-extend of AX

99 CDQ EDX:EAX ← sign-extend of EAX
3-180

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX ← SignExtend(EAX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

INSTRUCTION SET REFERENCE

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.
3-181

INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

Operation

old_AL ← AL;
old_CF ← CF;
CF ← 0;

Opcode Instruction Description

27 DAA Decimal adjust AL after addition
3-182

IF (((AL AND 0FH) > 9) OR AF = 1)
 THEN
 AL ← AL + 6;
 CF ← old_CF OR (Carry from AL ← AL + 6);
 AF ← 1;
 ELSE
 AF ← 0;
FI;
IF ((old_AL > 99H) OR (old_CF = 1))
 THEN
 AL ← AL + 60H;
 CF ← 1;
 ELSE
 CF ← 0;
FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition (Continued)

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.
3-183

INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed
BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

Operation

old_AL ← AL;
old_CF ← CF;
CF ← 0;

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction
3-184

IF (((AL AND 0FH) > 9) OR AF = 1)
 THEN
 AL ← AL − 6;
 CF ← old_CF OR (Borrow from AL ← AL − 6);
 AF ← 1;
 ELSE
 AF ← 0;
FI;
IF ((old_AL > 99H) OR (old_CF = 1))
 THEN
 AL ← AL − 60H;
 CF ← 1;
 ELSE
 CF ← 0;
FI;

Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX

After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111
DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction (Continued)

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.
3-185

INSTRUCTION SET REFERENCE

DEC—Decrement by 1

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1
3-186

DEST ← DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

INSTRUCTION SET REFERENCE

DEC—Decrement by 1 (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-187

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AX, DX:AX, or EDX:EAX registers (dividend) by the
source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size (dividend/divisor), as shown in the following table:

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8, with result stored in
AL ← Quotient, AH ← Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16, with result stored in
AX ← Quotient, DX ← Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32, with result stored in
EAX ← Quotient, EDX ← Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient
3-188

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OperandSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (Continued)

ELSE
IF OperandSize = 16 (* doubleword/word operation *)

THEN
temp ← DX:AX / SRC;

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
3-189

FI;
FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (Continued)

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
3-190

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

DIVPD—Divide Packed Double-Precision Floating-Point Values

Description

Performs a SIMD divide of the four packed double-precision floating-point values in the desti-
nation operand (first operand) by the four packed double-precision floating-point values in the
source operand (second operand), and stores the packed double-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 11-3 in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1 for an illustration of a SIMD double-precision
floating-point operation.

Operation

DEST[63-0] ← DEST[63-0] / (SRC[63-0]);
DEST[127-64] ← DEST[127-64] / (SRC[127-64]);

Opcode Instruction Description

66 0F 5E /r DIVPD xmm1, xmm2/m128 Divide packed double-precision floating-point values in
xmm1 by packed double-precision floating-point values
xmm2/m128.
3-191

Intel C/C++ Compiler Intrinsic Equivalent

DIVPD __m128 _mm_div_pd(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

DIVPD—Divide Packed Double-Precision Floating-Point Values
(Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-192

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

DIVPS—Divide Packed Single-Precision Floating-Point Values

Description

Performs a SIMD divide of the two packed single-precision floating-point values in the destina-
tion operand (first operand) by the two packed single-precision floating-point values in the
source operand (second operand), and stores the packed single-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 10-5 in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1 for an illustration of a SIMD single-precision
floating-point operation.

Operation

DEST[31-0] ← DEST[31-0] / (SRC[31-0]);

Opcode Instruction Description

0F 5E /r DIVPS xmm1, xmm2/m128 Divide packed single-precision floating-point values in
xmm1 by packed single-precision floating-point values
xmm2/m128.
3-193

DEST[63-32] ← DEST[63-32] / (SRC[63-32]);
DEST[95-64] ← DEST[95-64] / (SRC[95-64]);
DEST[127-96] ← DEST[127-96] / (SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

INSTRUCTION SET REFERENCE

DIVPS—Divide Packed Single-Precision Floating-Point Values
(Continued)

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
3-194

CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

INSTRUCTION SET REFERENCE

DIVSD—Divide Scalar Double-Precision Floating-Point Values

Description

Divides the low double-precision floating-point value in the destination operand (first operand)
by the low double-precision floating-point value in the source operand (second operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illustration of a
scalar double-precision floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] / SRC[63-0];
* DEST[127-64] remains unchanged *;

Opcode Instruction Description

F2 0F 5E /r DIVSD xmm1, xmm2/m64 Divide low double-precision floating-point value n xmm1
by low double-precision floating-point value in
xmm2/mem64.
3-195

Intel C/C++ Compiler Intrinsic Equivalent

DIVSD __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

INSTRUCTION SET REFERENCE

DIVSD—Divide Scalar Double-Precision Floating-Point Values
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-196

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

DIVSS—Divide Scalar Single-Precision Floating-Point Values

Description

Divides the low single-precision floating-point value in the destination operand (first operand)
by the low single-precision floating-point value in the source operand (second operand), and
stores the single-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain unchanged. See
Figure 10-6 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of a scalar single-precision floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] / SRC[31-0];
* DEST[127-32] remains unchanged *;

Opcode Instruction Description

F3 0F 5E /r DIVSS xmm1, xmm2/m32 Divide low single-precision floating-point value in xmm1
by low single-precision floating-point value in
xmm2/m32
3-197

Intel C/C++ Compiler Intrinsic Equivalent

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

INSTRUCTION SET REFERENCE

DIVSS—Divide Scalar Single-Precision Floating-Point Values
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.
3-198

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

EMMS—Empty MMX Technology State

Description

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks
the x87 FPU data registers (which are aliased to the MMX technology registers) as available for
use by x87 FPU floating-point instructions. (See Figure 8-7 in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for the format of the x87 FPU tag word.) All other MMX
instructions (other than the EMMS instruction) set all the tags in x87 FPU tag word to valid (all
0s).

The EMMS instruction must be used to clear the MMX technology state at the end of all MMX
technology procedures or subroutines and before calling other procedures or subroutines that
may execute x87 floating-point instructions. If a floating-point instruction loads one of the regis-
ters in the x87 FPU data register stack before the x87 FPU tag word has been reset by the EMMS
instruction, an x87 floating-point register stack overflow can occur that will result in an x87
floating-point exception or incorrect result.

Opcode Instruction Description

0F 77 EMMS Set the x87 FPU tag word to empty.
3-199

Operation

x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent

void_mm_empty()

Flags Affected

None.

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions

Same as for protected mode exceptions.

Virtual-8086 Mode Exceptions

Same as for protected mode exceptions.

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the
procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure
3-200

and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at
the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of 1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with
access points to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” in Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume
1, for more information about the actions of the ENTER instruction.

Operation

NestingLevel ← NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp ← ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (Continued)

IF (NestingLevel > 0)
FOR i ← 1 TO (NestingLevel − 1)

DO
IF OperandSize = 32

THEN
IF StackSize = 32

EBP ← EBP − 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP ← BP − 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP ← EBP − 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP ← BP − 2;
3-201

Push([BP]); (* word push *)
FI;

FI;
OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP ← FrameTemp
ESP ← EBP − Size;

ELSE (* StackSize = 16*)
BP ← FrameTemp
SP ← BP − Size;

FI;
END;

Flags Affected

None.

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.
3-202

INSTRUCTION SET REFERENCE

F2XM1—Compute 2x–1

Description

Computes the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) – 1)

ST(0) SRC ST(0) DEST

−1.0 to −0 −0.5 to −0

−0 −0
3-203

Values other than 2 can be exponentiated using the following formula:

xy ← 2(y ∗ log
2
x)

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

+0 +0

+0 to +1.0 +0 to 1.0

INSTRUCTION SET REFERENCE

F2XM1—Compute 2x–1 (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
3-204

#NM EM or TS in CR0 is set.

INSTRUCTION SET REFERENCE

FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞
3-205

NOTE:

F Means finite floating-point value.

Operation

ST(0) ← |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

NaN NaN

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-precision or double-precision floating-
point format or in word or doubleword integer format.

Opcode Instruction Description

D8 /0 FADD m32fp Add m32fp to ST(0) and store result in ST(0)

DC /0 FADD m64fp Add m64fp to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)
3-206

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a floating-point
or an integer value) to the contents of the ST(0) register. The two-operand version, adds the
contents of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be
doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision
floating-point format before performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

.

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+F or +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN
3-207

Operation

IF instruction is FIADD
THEN

DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* source operand is floating-point value *)

DEST ← DEST + SRC;
FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.
3-208

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point format and
pushes the value onto the FPU stack. The source operand is loaded without rounding errors. The
sign of the source operand is preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to floating-point and push onto the
FPU stack.
3-209

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-210

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in
the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, according to rounding mode specified by the RC field of the
FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST
3-211

NOTES:

F Means finite floating-point value.

D Means packed-BCD number.

* Indicates floating-point invalid-operation (#IA) exception.

** ±0 or ±1, depending on the rounding mode.

If the converted value is too large for the destination format, or if the source operand is an ∞,
SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is
signaled. If the invalid-operation exception is not masked, an invalid-arithmetic-operand excep-
tion (#IA) is generated and no value is stored in the destination operand. If the invalid-operation
exception is masked, the packed BCD indefinite value is stored in memory.

-∞ or Value Too Large for DEST Format *

F ≤ −1 −D

−1 < F < −0 **

−0 −0

+0 +0

+0 < F < +1 **

F ≥ +1 +D

+∞ or Value Too Large for DEST Format *

NaN *

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (Continued)

Operation

DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported format.

#P Value cannot be represented exactly in destination format.
3-212

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to
a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-213

INSTRUCTION SET REFERENCE

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice versa. The following table shows the results obtained when changing
the sign of various classes of numbers.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 −0

+F −F
3-214

NOTE:

F Means finite floating-point value.

Operation
SignBit(ST(0)) ← NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

+∞ −∞

NaN NaN

INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions

NOTE:

* See “IA-32 Architecture Compatibility” below.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions
before clearing the exception flags; the FNCLEX instruction does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction
followed by an FNCLEX instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.
3-215

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible
(under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNCLEX instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the
SIMD floating-point exception flags in the MXCRS register.

Operation

FPUStatusWord[0..7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.
3-216

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second operand)
to the destination operand (first operand) if the given test condition is true. The conditions for
each mnemonic are given in the Description column above and in Table 7-4 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1. The source operand is always in the ST(i)
register and the destination operand is always ST(0).

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)
3-217

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family proces-
sors and are not available in earlier IA-32 processors.

Operation

IF condition TRUE
ST(0) ← ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.
3-218

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 is equal to +0.0.

Opcode Instruction Description

D8 /2 FCOM m32fp Compare ST(0) with m32fp.

DC /2 FCOM m64fp Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Compare ST(0) with m32fp and pop register stack.

DC /3 FCOMP m64fp Compare ST(0) with m64fp and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.
3-219

NOTE:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” in
this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

	IA-32 Intel® Architecture Software Developer’s Manual
	Disclaimer
	Contents
	CHAPTER 1 About This Manual
	1.1. IA-32 Processors Covered in this Manual
	1.2. Overview of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction ...
	1.3. NOTATIONAL CONVENTIONS
	1.3.1. Bit and Byte Order
	1.3.2. Reserved Bits and Software Compatibility
	1.3.3. Instruction Operands
	1.3.4. Hexadecimal and Binary Numbers
	1.3.5. Segmented Addressing
	1.3.6. Exceptions

	1.4. Related Literature

	CHAPTER 2 Instruction Format
	2.1. General INSTRUCTION FORMAT
	2.2. Instruction Prefixes
	2.3. Opcode
	2.4. ModR/M and SIB Bytes
	2.5. Displacement and Immediate Bytes
	2.6. Addressing-Mode Encoding of ModR/M and SIB Bytes

	CHAPTER 3 Instruction Set Reference
	3.1. Interpreting the Instruction Reference Pages
	3.1.1. Instruction Format
	3.1.1.1. Opcode Column
	3.1.1.2. Instruction Column
	3.1.1.3. Description Column
	3.1.1.4. Description

	3.1.2. Operation
	3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents
	3.1.3.1. The Intrinsics API
	3.1.3.2. MMX™ Technology Intrinsics
	3.1.3.3. SSE and SSE2 Intrinsics

	3.1.4. Flags Affected
	3.1.5. FPU Flags Affected
	3.1.6. Protected Mode Exceptions
	3.1.7. Real-Address Mode Exceptions
	3.1.8. Virtual-8086 Mode Exceptions
	3.1.9. Floating-Point Exceptions
	3.1.10. SIMD Floating-Point Exceptions

	3.2. Instruction reference
	AAA—ASCII Adjust After Addition
	AAD—ASCII Adjust AX Before Division
	AAM—ASCII Adjust AX After Multiply
	AAS—ASCII Adjust AL After Subtraction
	ADC—Add with Carry
	ADD—Add
	ADDPD—Add Packed Double-Precision Floating-Point Values
	ADDPS—Add Packed Single-Precision Floating-Point Values
	ADDSD—Add Scalar Double-Precision Floating-Point Values
	ADDSS—Add Scalar Single-Precision Floating-Point Values
	AND—Logical AND
	ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values
	ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values
	ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
	ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
	ARPL—Adjust RPL Field of Segment Selector
	BOUND—Check Array Index Against Bounds
	BSF—Bit Scan Forward
	BSR—Bit Scan Reverse
	BSWAP—Byte Swap
	BT—Bit Test
	BTC—Bit Test and Complement
	BTR—Bit Test and Reset
	BTS—Bit Test and Set
	CALL—Call Procedure
	CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword
	CDQ—Convert Double to Quad
	CLC—Clear Carry Flag
	CLD—Clear Direction Flag
	CLFLUSH—Flush Cache Line
	CLI — Clear Interrupt Flag
	CLTS—Clear Task-Switched Flag in CR0
	CMC—Complement Carry Flag
	CMOVcc—Conditional Move
	CMP—Compare Two Operands
	CMPPD—Compare Packed Double-Precision Floating-Point Values
	CMPPS—Compare Packed Single-Precision Floating-Point Values
	CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
	CMPSD—Compare Scalar Double-Precision Floating-Point Values
	CMPSS—Compare Scalar Single-Precision Floating-Point Values
	CMPXCHG—Compare and Exchange
	CMPXCHG8B—Compare and Exchange 8 Bytes
	COMISD—Compare Scalar Ordered Double-Precision Floating- Point Values and Set EFLAGS
	COMISS—Compare Scalar Ordered Single-Precision Floating- Point Values and Set EFLAGS
	CPUID—CPU Identification
	CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PS—Covert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating...
	CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPS2PD—Covert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating...
	CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
	CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating...
	CVTSI2SD—Convert Doubleword Integer to Scalar Double- Precision Floating-Point Value
	CVTSI2SS—Convert Doubleword Integer to Scalar Single- Precision Floating-Point Value
	CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating...
	CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doublew...
	CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doublew...
	CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doublew...
	CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doublew...
	CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Doublewo...
	CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to Quadword
	CWDE—Convert Word to Doubleword
	DAA—Decimal Adjust AL after Addition
	DAS—Decimal Adjust AL after Subtraction
	DEC—Decrement by 1
	DIV—Unsigned Divide
	DIVPD—Divide Packed Double-Precision Floating-Point Values
	DIVPS—Divide Packed Single-Precision Floating-Point Values
	DIVSD—Divide Scalar Double-Precision Floating-Point Values
	DIVSS—Divide Scalar Single-Precision Floating-Point Values
	EMMS—Empty MMX Technology State
	ENTER—Make Stack Frame for Procedure Parameters
	F2XM1—Compute 2x–1
	FABS—Absolute Value
	FADD/FADDP/FIADD—Add
	FBLD—Load Binary Coded Decimal
	FBSTP—Store BCD Integer and Pop
	FCHS—Change Sign
	FCLEX/FNCLEX—Clear Exceptions
	FCMOVcc—Floating-Point Conditional Move
	FCOM/FCOMP/FCOMPP—Compare Floating Point Values
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS
	FCOS—Cosine
	FDECSTP—Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV—Divide
	FDIVR/FDIVRP/FIDIVR—Reverse Divide
	FFREE—Free Floating-Point Register
	FICOM/FICOMP—Compare Integer
	FILD—Load Integer
	FINCSTP—Increment Stack-Top Pointer
	FINIT/FNINIT—Initialize Floating-Point Unit
	FIST/FISTP—Store Integer
	FLD—Load Floating Point Value
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant
	FLDCW—Load x87 FPU Control Word
	FLDENV—Load x87 FPU Environment
	FMUL/FMULP/FIMUL—Multiply
	FNOP—No Operation
	FPATAN—Partial Arctangent
	FPREM—Partial Remainder
	FPREM1—Partial Remainder
	FPTAN—Partial Tangent
	FRNDINT—Round to Integer
	FRSTOR—Restore x87 FPU State
	FSAVE/FNSAVE—Store x87 FPU State
	FSCALE—Scale
	FSIN—Sine
	FSINCOS—Sine and Cosine
	FSQRT—Square Root
	FST/FSTP—Store Floating Point Value
	FSTCW/FNSTCW—Store x87 FPU Control Word
	FSTENV/FNSTENV—Store x87 FPU Environment
	FSTSW/FNSTSW—Store x87 FPU Status Word
	FSUB/FSUBP/FISUB—Subtract
	FSUBR/FSUBRP/FISUBR—Reverse Subtract
	FTST—TEST
	FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values
	FWAIT—Wait
	FXAM—Examine
	FXCH—Exchange Register Contents
	FXRSTOR—Restore x87 FPU, MMX Technology, SSE, and SSE2 State
	FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
	FXTRACT—Extract Exponent and Significand
	FYL2X—Compute y * log2x
	FYL2XP1—Compute y * log2(x +1)
	HLT—Halt
	IDIV—Signed Divide
	IMUL—Signed Multiply
	IN—Input from Port
	INC—Increment by 1
	INS/INSB/INSW/INSD—Input from Port to String
	INT n/INTO/INT 3—Call to Interrupt Procedure
	INVD—Invalidate Internal Caches
	INVLPG—Invalidate TLB Entry
	IRET/IRETD—Interrupt Return
	Jcc—Jump if Condition Is Met
	JMP—Jump
	LAHF—Load Status Flags into AH Register
	LAR—Load Access Rights Byte
	LDMXCSR—Load MXCSR Register
	LDS/LES/LFS/LGS/LSS—Load Far Pointer
	LEA—Load Effective Address
	LEAVE—High Level Procedure Exit
	LES—Load Full Pointer
	LFENCE—Load Fence
	LFS—Load Full Pointer
	LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
	LGS—Load Full Pointer
	LLDT—Load Local Descriptor Table Register
	LIDT—Load Interrupt Descriptor Table Register
	LMSW—Load Machine Status Word
	LOCK—Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD—Load String
	LOOP/LOOPcc—Loop According to ECX Counter
	LSL—Load Segment Limit
	LSS—Load Full Pointer
	LTR—Load Task Register
	MASKMOVDQU—Store Selected Bytes of Double Quadword
	MASKMOVQ—Store Selected Bytes of Quadword
	MAXPD—Return Maximum Packed Double-Precision Floating- Point Values
	MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
	MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
	MFENCE—Memory Fence
	MINPD—Return Minimum Packed Double-Precision Floating-Point Values
	MINPS—Return Minimum Packed Single-Precision Floating-Point Values
	MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
	MOV—Move
	MOV—Move to/from Control Registers
	MOV—Move to/from Debug Registers
	MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
	MOVD—Move Doubleword
	MOVDQA—Move Aligned Double Quadword
	MOVDQU—Move Unaligned Double Quadword
	MOVDQ2Q—Move Quadword from XMM to MMX Technology Register
	MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD—Move High Packed Double-Precision Floating-Point Value
	MOVHPS—Move High Packed Single-Precision Floating-Point Values
	MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD—Move Low Packed Double-Precision Floating-Point Value
	MOVLPS—Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask
	MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask
	MOVNTDQ—Store Double Quadword Using Non-Temporal Hint
	MOVNTI—Store Doubleword Using Non-Temporal Hint
	MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTQ—Store of Quadword Using Non-Temporal Hint
	MOVQ—Move Quadword
	MOVQ2DQ—Move Quadword from MMX Technology to XMM Register
	MOVS/MOVSB/MOVSW/MOVSD—Move Data from String�to�String
	MOVSD—Move Scalar Double-Precision Floating-Point Value
	MOVSS—Move Scalar Single--Precision Floating-Point Values
	MOVSX—Move with Sign-Extension
	MOVUPD—Move Unaligned Packed Double-Precision Floating- Point Values
	MOVUPS—Move Unaligned Packed Single-Precision Floating- Point Values
	MOVZX—Move with Zero-Extend
	MUL—Unsigned Multiply
	MULPD—Multiply Packed Double-Precision Floating-Point Values
	MULPS—Multiply Packed Single-Precision Floating-Point Values
	MULSD—Multiply Scalar Double-Precision Floating-Point Values
	MULSS—Multiply Scalar Single-Precision Floating-Point Values
	NEG—Two's Complement Negation
	NOP—No Operation
	NOT—One's Complement Negation
	OR—Logical Inclusive OR
	ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values
	ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values
	OUT—Output to Port
	OUTS/OUTSB/OUTSW/OUTSD—Output String to Port
	PACKSSWB/PACKSSDW—Pack with Signed Saturation
	PACKUSWB—Pack with Unsigned Saturation
	PADDB/PADDW/PADDD—Add Packed Integers
	PADDQ—Add Packed Quadword Integers
	PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation
	PAND—Logical AND
	PANDN—Logical AND NOT
	PAUSE—Spin Loop Hint
	PAVGB/PAVGW—Average Packed Integers
	PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
	PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than
	PEXTRW—Extract Word
	PINSRW—Insert Word
	PMADDWD—Multiply and Add Packed Integers
	PMAXSW—Maximum of Packed Signed Word Integers
	PMAXUB—Maximum of Packed Unsigned Byte Integers
	PMINSW—Minimum of Packed Signed Word Integers
	PMINUB—Minimum of Packed Unsigned Byte Integers
	PMOVMSKB—Move Byte Mask
	PMULHUW—Multiply Packed Unsigned Integers and Store High Result
	PMULHW—Multiply Packed Signed Integers and Store High Result
	PMULLW—Multiply Packed Signed Integers and Store Low Result
	PMULUDQ—Multiply Packed Unsigned Doubleword Integers
	POP—Pop a Value from the Stack
	POPA/POPAD—Pop All General-Purpose Registers
	POPF/POPFD—Pop Stack into EFLAGS Register
	POR—Bitwise Logical OR
	PREFETCHh—Prefetch Data Into Caches
	PSADBW—Compute Sum of Absolute Differences
	PSHUFD—Shuffle Packed Doublewords
	PSHUFHW—Shuffle Packed High Words
	PSHUFLW—Shuffle Packed Low Words
	PSHUFW—Shuffle Packed Words
	PSLLDQ—Shift Double Quadword Left Logical
	PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical
	PSRAW/PSRAD—Shift Packed Data Right Arithmetic
	PSRLDQ—Shift Double Quadword Right Logical
	PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
	PSUBB/PSUBW/PSUBD—Subtract Packed Integers
	PSUBQ—Subtract Packed Quadword Integers
	PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data
	PUSH—Push Word or Doubleword Onto the Stack
	PUSHA/PUSHAD—Push All General-Purpose Registers
	PUSHF/PUSHFD—Push EFLAGS Register onto the Stack
	PXOR—Logical Exclusive OR
	RCL/RCR/ROL/ROR-—Rotate
	RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values
	RCPSS—Compute Reciprocal of Scalar Single-Precision Floating- Point Values
	RDMSR—Read from Model Specific Register
	RDPMC—Read Performance-Monitoring Counters
	RDTSC—Read Time-Stamp Counter
	RDTSC—Read Time-Stamp Counter (Continued)
	REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
	RET—Return from Procedure
	ROL/ROR—Rotate
	RSM—Resume from System Management Mode
	RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-Point Values
	RSQRTSS—Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
	SAHF—Store AH into Flags
	SAL/SAR/SHL/SHR—Shift
	SBB—Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD—Scan String
	SETcc—Set Byte on Condition
	SFENCE—Store Fence
	SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
	SHL/SHR—Shift Instructions
	SHLD—Double Precision Shift Left
	SHRD—Double Precision Shift Right
	SHUFPD—Shuffle Packed Double-Precision Floating-Point Values
	SHUFPS—Shuffle Packed Single-Precision Floating-Point Values
	SIDT—Store Interrupt Descriptor Table Register
	SLDT—Store Local Descriptor Table Register
	SMSW—Store Machine Status Word
	SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values
	SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values
	SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value
	SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value
	STC—Set Carry Flag
	STD—Set Direction Flag
	STI—Set Interrupt Flag
	STMXCSR—Store MXCSR Register State
	STOS/STOSB/STOSW/STOSD—Store String
	STR—Store Task Register
	SUB—Subtract
	SUBPD—Subtract Packed Double-Precision Floating-Point Values
	SUBPS—Subtract Packed Single-Precision Floating-Point Values
	SUBSD—Subtract Scalar Double-Precision Floating-Point Values
	SUBSS—Subtract Scalar Single-Precision Floating-Point Values
	SYSENTER—Fast System Call
	SYSEXIT—Fast Return from Fast System Call
	TEST—Logical Compare
	UCOMISD—Unordered Compare Scalar Double-Precision Floating- Point Values and Set EFLAGS
	UCOMISS—Unordered Compare Scalar Single-Precision Floating- Point Values and Set EFLAGS
	UD2—Undefined Instruction
	UNPCKHPD—Unpack and Interleave High Packed Double- Precision Floating-Point Values
	UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values
	UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values
	UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values
	VERR, VERW—Verify a Segment for Reading or Writing
	WAIT/FWAIT—Wait
	WBINVD—Write Back and Invalidate Cache
	WRMSR—Write to Model Specific Register
	XADD—Exchange and Add
	XCHG—Exchange Register/Memory with Register
	XLAT/XLATB—Table Look-up Translation
	XOR—Logical Exclusive OR
	XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values
	XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

	APPENDIX A Opcode Map
	A.1. Key to Abbreviations
	A.1.1. Codes for Addressing Method
	A.1.2. Codes for Operand Type
	A.1.3. Register Codes

	A.2. OPCODE LOOK-UP EXAMPLES
	A.2.1. One-Byte Opcode Instructions
	A.2.2. Two-Byte Opcode Instructions
	A.2.3. Opcode Map Notes
	A.2.4. Opcode Extensions For One- And Two-byte Opcodes
	A.2.5. Escape Opcode Instructions
	A.2.5.1. Opcodes with ModR/M Bytes in the 00H through BFH Range
	A.2.5.2. Opcodes with ModR/M Bytes outside the 00H through BFH Range
	A.2.5.3. Escape Opcodes with D8 as First Byte
	A.2.5.4. Escape Opcodes with D9 as First Byte
	A.2.5.5. Escape Opcodes with DA as First Byte
	A.2.5.6. Escape Opcodes with DB as First Byte
	A.2.5.7. Escape Opcodes with DC as First Byte
	A.2.5.8. Escape Opcodes with DD as First Byte
	A.2.5.9. Escape Opcodes with DE as First Byte
	A.2.5.10. Escape Opcodes with DF As First Byte

	APPENDIX B Instruction Formats and Encodings
	B.1. Machine Instruction Format
	B.1.1. Reg Field (reg)
	B.1.2. Encoding of Operand Size Bit (w)
	B.1.3. Sign Extend (s) Bit
	B.1.4. Segment Register Field (sreg)
	B.1.5. Special-Purpose Register (eee) Field
	B.1.6. Condition Test Field (tttn)
	B.1.7. Direction (d) Bit

	B.2. General-Purpose Instruction Formats and Encodings
	B.3. Pentium Family Instruction Formats and Encodings
	B.4. MMX Instruction Formats and Encodings
	B.4.1. Granularity Field (gg)
	B.4.2. MMX Technology and General-Purpose Register Fields (mmxreg and reg)
	B.4.3. MMX Instruction Formats and Encodings Table

	B.5. P6 Family INstruction Formats and Encodings
	B.6. SSE Instruction Formats and Encodings
	B.7. SSE2 Instruction Formats and Encodings
	B.7.1. Granularity Field (gg)

	B.8. Floating-Point Instruction Formats and Encodings

	APPENDIX C Intel C/C++ Compiler Intrinsics and Functional Equivalents
	C.1. Simple Intrinsics
	C.2. Composite Intrinsics

