
Princeton University
COS 217: Introduction to Programming Systems

Spring 2004 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, and required readings.
New topics are in boldface.

1. C programming

The program preparation process
Memory layout
Data types
Operators
Statements
Function declarations and definitions
Pointers
Arrays
Command-line arguments
Constants
Text files
Structures
Dynamic memory management
Void pointers
Function pointers
Variable declarations and definitions
Variable scope, linkage, and duration
Macros and their dangers
The assert macro

2. Programming style

Modularity, interfaces, implementations
Multi-file programs using header files
Opaque pointers
Abstract data types
Abstract objects
Testing strategies
Profiling and instrumentation
Performance tuning
Robust programming, error handling strategies
Exception handling
Portable programming

Page 1 of 4

3. IA-32 architecture and assembly language

Registers vs. memory
Assembly language

Directives (.section, .asciz, .long, etc.)
Instructions/mnemonics (movl, addl, call, etc.)
Condition codes and conditional branch instructions
Instruction operands

Immediate operands
Register operands
Memory operands

The stack and local variables
The stack and function calls

Number representation
The binary, octal, and hexadecimal number systems
Signed numbers

Signed magnitude, one’s complement, two’s complement
Floating point numbers

Assemblers
The forward reference problem
Pass 1: Create symbol table, relocation records, other sections
Pass 2: Use relocation records and symbol table to partially patch
code in other sections

Linkers
Resolution

Fetch library code
Enhance symbol table

Relocation
Use relocation records and symbol table to completely patch
code in other sections

Inline assembly language within C programs

4. Operating systems

History and overview
UNIX shells

Shell built-in commands vs. executable binary commands
Processes

Scheduling, context switching
UNIX system calls: getpid, execvp, fork, wait, kill, chdir, setenv,
unsetenv
Standard C functions: exit, atexit, getenv

I/O
UNIX file descriptors
UNIX file redirection
Inter-process communication via pipes

Page 2 of 4

Inter-process communication via sockets
Standard C functions: fopen, fclose, fflush, perror, fgetc, fputc, fgets,
fputs, fscanf, fprintf, scanf, printf, getc, putc, putchar, getchar, gets, puts,
etc.
UNIX system calls: creat, open, close, dup, read, write, pipe

Signals
UNIX kill command
Standard C function: signal
UNIX system calls: sigaction, alarm, setitimer

5. Applications

“De-commenting” and lexical analysis via finite state automata
String manipulation
Symbol tables and hash tables
Execution profilers
UNIX shells

6. Tools: The UNIX/GNU programming environment

UNIX, bash, xemacs, gcc, gdb, make, gprof

Readings

As specified on the course web pages...

Required:

C Programming (King): 1-15, 16.1-3, 17-19, 24.3

The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8

IA32 Intel Architecture Software Developer's Manual, (Volume 1: Basic
Architecture): 4

Programming from the Ground Up (Bartlett): 1, 2, 3, 4, 9, 10, B, E, F

The UNIX Programming Environment (Kernighan & Pike): 7.4-5

Recommended:

Programming with GNU Software (Loukides & Oram): 2, 3, 4, 6, 7, 9

The C Programming Language (Kernighan & Ritchie): 1, 4.11, 5

C Interfaces and Implementations (Hanson): 3.2

Page 3 of 4

Using as, the GNU Assembler

IA32 Intel Architecture Software Developer's Manual, Volume 1: Basic
Architecture: 2.1, 3, 5

Programming from the Ground Up (Bartlett): 5, 6, 7, 8, 11, 12, 13, C

Executable and Linkable Format

The UNIX Programming Environment (Kernighan & Pike): 1, 2, 3, 4, 5, 7.1-3

Copyright © 2004 by Robert M. Dondero, Jr.

Page 4 of 4

	Topics
	Variable declarations and definitions

