
Princeton University
COS 217: Introduction to Programming Systems

Ish: Development Stages

Stage 0: Preliminaries

Learn the overall structure of ish and the pertinent background information.

Study the assignment statement. Study the lecture notes on system calls, processes and pipes, and signals.
Study literature on UNIX system calls, processes, pipes, and signals. Chapter 7 of the book The UNIX
Programming Environment (Kernighan and Pike, Prentice Hall, Englewood Cliffs, NJ, 1984) is
appropriate.

Decide, at least tentatively, on the key modules in your program.

Stage 1: Lexical Analysis

Create the lexical analysis phase of ish. That is, create a lexical analyzer whose input is a sequence of
characters from a character array and whose output is a token array.

Write the high-level code that calls your lexical analyzer. The code should first read lines from file ~/.ishrc
until it reaches EOF. (It should print each line that it reads from ~/.ishrc immediately after reading it.)
Then the code should read lines from stdin until it reaches EOF (simulated by ^D).

Testing: Create temporary code that prints the token array that your lexical analyzer produces.

Stage 2: Syntactic Analysis (alias Parsing)

Create the syntactic analysis phase of ish. That is, create a parser whose input is a token array and whose
output is a pipeline consisting of commands.

Write the high-level code that calls your parser. The code should pass the token array (created by your
lexical analyzer) to your parser.

Testing: Create temporary code that prints the pipeline that your parser produces.

Stage 3: Executable Binary Commands

Create an initial version of the execution phase of ish so it can execute executable binary commands. For
now, assume that commands are not part of pipelines, and that neither stdin nor stdout are redirected. Use
the fork and execvp system calls.

Write the high-level code that calls your built-in command execution code.

Testing: Use ish to execute numerous executable binary commands (cat, more, etc.) with and without
arguments.

Page 1 of 2

Stage 4: Shell Built-In Commands

Enhance the execution phase of ish. Specifically, create code that executes the built-in commands exit, cd,
setenv, unsetenv.

Testing: Test the cd built-in command by executing it and the pwd and ls executable binary commands.
Test the setenv and unsetenv built-in commands by executing them and the printenv executable binary
command. Execute the exit command.

Stage 5: I/O Redirection

Enhance the execution phase of ish so it can execute executable binary commands that redirect stdin and/or
stdout. Use the creat, open, close, and dup (or dup2) system calls.

Testing: Repeat the tests for previous stages, adding I/O redirection.

Stage 6: Pipelines

Suggestion: As a preliminary exercise, write a program that executes the pipeline “ls | sort | more”. Note
that the parent process should:

• Call pipe to create two pipes.
• Call fork to create three child processes.
• Call close and dup so the first child’s stdout is connected to the first pipe, the second child’s stdin

is connected to the first pipe, the second child’s stdout is connected to the second pipe, and the
third child’s stdin is connected to the second pipe.

• Call execvp so the first child executes “ls”, the second child executes “sort”, and the third child
executes “more”.

Enhance the execution phase of ish so it can execute pipelines consisting of multiple executable binary
commands connected with pipes. Use the fork, execvp, pipe, close and dup (or dup2) system calls. Note
that the first command of a pipeline may redirect stdin, and that the last command may redirect stdout.

Testing: Repeat the tests for previous stages, adding pipes. Use ish to execute the given sample_ishrc.txt
file.

Stage 7: Process Control

Enhance ish so it ignores SIGINT signals, but so that its child processes do not necessarily ignore SIGINT
signals.

Testing: Execute ish, and type ^C at its prompt; ish should ignore the signal. Create a program that
intentionally enters an infinite loop. Use ish to execute the program. Type ^C to kill the program.

Stage 8: History (for extra credit)

Enhance ish to implement the history built-in command and the !prefix facility.

Copyright © 2004 by Robert M. Dondero, Jr.

Page 2 of 2

	COS 217: Introduction to Programming Systems
	Ish: Development Stages
	Stage 0: Preliminaries
	Stage 1: Lexical Analysis

