# Princeton University <br> COS 217: Introduction to Programming Systems <br> Pointer-Related Operators 

Key
$x$

p, p1, p2 $\quad$| A variable of any type |
| :--- |
| Pointer variables |
| in integral expression |

## Operators Meaningful for Any Pointer Variable

## "Address Of" Operator

\&x The address of $x$.

Dereference Operator
*p The contents of the memory referenced by p.

## Relational Operators

```
p1 == p2 1 if p1 is equal to p2, and 0 otherwise.
p1 != p2 1 if p1 is unequal to p2, and 0 otherwise.
```

Assignment Operator
p1 = p2 Side effect: Assign p2 to p1. The new value of p1.

## Operators Meaningful if and only if Pointers Reference Array Elements

## Array Subscripting Operator

```
p[i] *(p + i), that is, the contents of memory at the address
```

    that is i elements after the address referenced by \(p\).
    
## Arithmetic Operators

```
p + i The address of the ith element after the one referenced by p.
i + p The address of the ith element after the one referenced by p.
p - i The address of the ith element before the one referenced by p.
p++ Side effect: Increment p to point to the next element.
    The previous value of p.
    Side effect: Increment p to point to the next element.
    The new value of p.
p-- Side effect: Decrement p to point to the previous element.
    The previous value of p.
--p Side effect: Decrement p to point to the previous element.
    The new value of p.
```


## Arithmetic Operators

```
p1 - p2 The "span" of p1 and p2.
```


## Relational Operators

```
p1 < p2 1 if p1 is less than p2, and 0 otherwise.
p1 <= p2 1 if p1 is less than or equal to p2, and 0 otherwise.
p1 > p2 1 if p1 is greater than p2, and 0 otherwise.
p1 >= p2 1 if p1 is greater than or equal to p2, and 0 otherwise.
```


## Assignment Operators

```
p += i Side effect: Increment p so its value is the address of
    the ith element after the one referenced by p.
    The new value of p.
p -= i Side effect: Decrement p so its value is the address of
    the ith element before the one referenced by p.
    The new value of p.
```


## Disallowed

```
p1 + p2
i - p
i += p
i -= p
p == i
```

Copyright © 2004 by Robert M. Dondero, Jr.

