
1

Program Design
&

Hash Tables
CS 217

2

Program design
1. Problem statement and requirements

What is the problem?

2. Specification
Detailed description of what the system should do, not how

3. Design
Explore design space, identify algorithms and key interfaces

4. Programming
Implement it in the simplest possible way; use libraries

5. Testing
Debug and test until the implementation is correct and efficient enough

6. Iterate
Do the design and implementation conform to the specification?

3

Design methodologies
• Two important design methodologies

o top-down design, or stepwise refinement
o bottom-up design

• Reality: use both
o top-down: what functionality do I need?

Avoids designing and building useless functionality
o bottom-up: what functionality do I know how to provide?

Avoids requiring impossible functionality

• Iterate up and down over the design until everything is both 
useful and feasible
o sometimes overlaps with implementation phase

4

Stepwise refinement
• Top-down design

starts with a high-level abstract solution
refines it by successive transformations to lower-level solutions
refinement ends at programming-language statements

• Key idea: each refinement or elaboration
must be small and correct
must move toward final solution

• Accompany refinements with assertions

• Refinements use English & pseudocode, but ultimately 
result in code



5

Example: library books
1. Problem statement:

The circulation file has a line of author,title for each checked out book
Need a program to find books checked out frequently

2. Specification
Read a text file; print out one copy of any line that appears 10 or more times

3. Design: how many lines are in a typical circulation file?
<findfreq> ≡

<for each line of input>
<look up the line in the table (add it if not already there)>
<increment this line’s count>

<for each member of the table>
<if that member’s count ≥ 10>

<print the line>

4. Programming: make forward progress by elaborating chunks

6

What modules?
• ADT: string table

• Modules:
o main.c handle command-line arguments (if any) and top-level loops

<findfreq> ≡
<includes>
<defines>
int main(int argc, char *argv[]) {

<locals>
<for each line of input>

<look up the line in the table (add it if not already there)>
<increment this line’s count>

<for each member of the table>
<if that member’s count ≥ 10>

<print the line>
return EXIT_SUCCESS;

}

o symtable.h interface for string table
o symtable.c implementation for string table

7

Elaboration
• Some elaborations can be done without defining the ADTs

<for each line of input> ≡
while (fgets(line, MAXLINE, stdin))

<defines> ≡
#define MAXLINE 512

<locals> ≡
char line[MAXLINE];

8

ADT: string table
symtable.h describes abstract operations, not implementation; what, not how

typedef struct SymTable *SymTable_T;
SymTable_T SymTable_new(void); /* create a new, empty table. */
int SymTable_put(SymTable_T table, char *key,            

void *value);
/* enter (key,value) binding in the table; else return 0 if already there */

void *SymTable_get(SymTable_T table, char *key);
/* look up key in the table, return value (if present) or else NULL */

void SymTable_map(SymTable_T table, 
void (*f)(char *key, void *value, void *extra),
void *extra);

/* apply f to every key in the table ... */

This was top-down design: specify just those operations necessary for 
client program



9

Next step: re-use, if possible
• Avoid some work by searching for an existing module or 

library that can do the work of SymTable module

• If found, then throw away symtable.h

• Let’s pretend we didn’t find one
10

A bit of bottom-up design
• Now that we’ve committed to create SymTable ADT, add 

more operations that make it useful in other applications.

• Don’t get carried away!  You’ll end up doing useless work

• This step is optional: you can always do it later as needed.

11

More of symtable interface
void SymTable_free(SymTable_T table);
/* Free table  */

int SymTable_getLength(SymTable_T table);
/* Return the number of bindings in table.

It is a checked runtime error for table to be NULL. */

int SymTable_remove(SymTable_T table, 
char *key);

/* Remove from table the binding whose key is key.  Return 1 if 
successful, 0 otherwise.  
It is a checked runtime error for table or key to be NULL. */

12

Cleaning up the interface
• Keep ADT interfaces small

o If an operation can be performed entirely outside the ADT, remove it 
from the interface

o Example:  SymTable_getLength

void count_me(char *key, void *value, void *pCnt){
*((int *)pCnt) += 1;

}
SymTable_getLength(Symtable_T table) {
int count = 0;
SymTable_map(table, count_me, &count);
return count;
}



13

Back to the client
• ADT interface gives enough information to finish the client, main.c

<locals> +≡
SymTable_T table = SymTable_new();
struct stats *v;

<includes> +≡
#include “symtable.h”;

<global-defs> ≡
struct stats {int count;};    (also must define makeStats...)

<look up the line in the table (add it if not already there)> ≡
v = SymTable_get(table, line);
if (!v) {

v = makeStats(0);
SymTable_put(table, line, v);

}
14

Finishing the client
<for each member of the table> ≡

SymTable_map(table, maybeprint, NULL);

<if that member’s count ≥ 10, print the line> ≡

void maybeprint(char *key, void *stats, 
void *extra){

if (((struct stats*)stats)->count >= 10)
fputs(key, stdout);

}

15

What the client main looks like
int main(int argc, char *argv[]) {

char line[MAXLINE]; 
SymTable_T table = SymTable_new();
struct stats *v; 
while (fgets(line, MAXLINE, stdin)) {

v = SymTable_get(table, line);
if (!v) {

v = makeStats(0);
SymTable_put(table, line, v);

}
incrementStats(v,1);

}
SymTable_map(table, maybeprint, NULL);
return EXIT_SUCCESS;

}
16

ADT implementation
• Now, begin to design the ADT implementation

• Start with a simple algorithm / data structure
o It’s good for debugging and testing the interface
o Maybe it’s good enough for the production system -- that would save 

the work of implementing a clever algorithm

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0



17

Next: Implement the ADT module
• You have to do this yourself in Programming Assignment 2.

• So I won’t explain it here.

18

Testing
• 5. Testing:  findfreq works, but runs too slowly on large 

inputs.  Why?
o Improve symtable’s implementation; don’t change its interface

• Solution: use a hash table
A symtable will be a pointer to an array of TABLESIZE linked lists
“Hash” the string into an integer h
let   i = h % TABLESIZE
search the ith linked list for the string, or
add the string to the head of the ith list

0

TABLESIZE-1

19

How large an array?
Array should be long enough that average “bucket” size is 1.

If the buckets are short, then lookup is fast.

If there are some very long buckets, then average lookup is slow.

This is OK:

0

TABLESIZE-1
20

The need for a good hash function
Array should be long enough that average “bucket” size is 1.

If the buckets are short, then lookup is fast.

If there are some very long buckets, then average lookup is slow.

This is not so good:

0

TABLESIZE-1 Therefore, hash function must evenly
distribute strings over integers 0..TABLESIZE



21

A reasonable hash function
How to hash a string into an integer?

Add up all the characters?  (won’t distribute evenly enough)

How about this:  (Σ aixi) mod c  (best results if a,c relatively prime)

• Choose a = 65599, c = 232

unsigned hash(char *string) {
int i; unsigned h = 0;
for (i=0; string[i]; i++)

h = h * 65599 + string[i];
return h;

}
• How does this implement (Σ aixi) mod c  ? 22

Hash table in action
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings:     the, cat, in, the, hat

Hash table initially empty.

First word:  the.    hash(“the”) = 965156977.    965156977 % 7 = 1.

Search the linked list   table[1]  for the string “the”; not found.

0
1
2
3
4
5
6

23

Hash table in action
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings:     the, cat, in, the, hat

Hash table initially empty.

First word:  “the”.    hash(“the”) = 965156977.    965156977 % 7 = 1.

Search the linked list   table[1]  for the string “the”; not found

Now:   table[1] = makelink(key, value, table[1])

0
1
2
3
4
5
6

the

24

Hash table in action
Second word:  “cat”.    hash(“cat”) = 3895848756.     3895848756 % 7 = 2.

Search the linked list   table[2]  for the string “cat”; not found

Now:   table[2] = makelink(key, value, table[2])

0
1
2
3
4
5
6

the



25

Hash table in action
Third word:  “in”.    hash(“in”) = 6888005. 6888005% 7 = 5.

Search the linked list   table[5]  for the string “in”; not found

Now:   table[5] = makelink(key, value, table[5])

0
1
2
3
4
5
6

the

cat

26

Hash table in action
Fourth word:  “the”.         hash(“the”) = 965156977.    965156977 % 7 = 1.

Search the linked list   table[1]  for the string “the”; found it!

0
1
2
3
4
5
6

the

cat

in

27

Hash table in action
Fourth word:  “hat”.         hash(“hat”) = 865559739.     865559739 % 7 = 

2.

Search the linked list   table[2]  for the string “hat”; not found.

Now, insert “hat” into the linked list  table[2].  

At beginning or end?  Doesn’t matter.

0
1
2
3
4
5
6

the

cat

in

28

Hash table in action

0
1
2
3
4
5
6

the

hat

in

cat



29

Number of buckets
• Average bucket size should be short

• Thus, number of buckets should be (approximately) greater 
than number of entries in table

• If (approximate) number of entries is known in advance, 
this is easy to arrange

• If (approximate) number of entries is unpredictable, then 
one can dynamically grow the hash table

• How to do it; cost analysis; ...

30

References on hashing
• Kernighan & Pike, Practice of Programming, §2.9

• Hanson, C Interfaces and Implementations, §3.2


