
1

Processes

CS 217

2

Operating System
• Supports virtual machines

o Promises each process the illusion of 
having whole machine to itself

• Provides services:
o Protection
o Scheduling 
o Memory management
o File systems
o Synchronization
o etc.

Hardware

OS Kernel

User
Process

User
Process

3

What is a Process?
• A process is a running program with its own …

o Processor state
– EIP, EFLAGS, registers

o Address space (memory)
– Text, bss, data, 

heap, stack

Hardware

OS Kernel

User
Process

User
Process

4

Operating System
• Resource allocation

o Sharing
o Protection
o Fairness
o Higher-level abstractions

• Common strategies
o Chop up resources into small pieces and

allocate small pieces at fine-grain level
o Introduce level of indirection and 

provide mapping from virtual resources to physical ones
o Use past history to predict future behavior

Hardware

OS Kernel

User
Process

User
Process



5

Life Cycle of a Process
• Running: instructions are being executed

• Waiting: waiting for some event (e.g., i/o finish) 

• Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting
6

Context Switch

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningWaiting

Waiting

Waiting

Process A Process B

7

Overlap CPU with I/O operations
• Schedule CPU for process B 

while process A is waiting for I/O
o Better utilize CPU

CPU CPU CPUI/O I/O I/OA:
CPU CPU CPUI/O I/O I/OB:

8

Process Control Block
• For each process, the kernel keeps track of ...

o Process state (new, ready, waiting, halted)
o CPU registers (EIP, EFLAGS, EAX, EBX, …)
o CPU scheduling information (priority, queues, ...)
o Memory management information (page tables, ...)
o Accounting information (time limits, group ID, ...)
o I/O status information (open files, I/O requests, ...)



9

Fork
• Create a new process (system call)

o child process inherits state from parent process
o parent and child have separate copies of that state
o parent and child share access to any open files

pid = fork();
if (pid != 0) {

/* in parent */
...

}
/* in child */
...

Parent

Child

10

Wait
• Parent waits for a child (system call)

o blocks until a child terminates
o returns pid of the child process
o returns –1 if no children exist (already exited)
o status

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
• Parent waits for a specific child to terminate

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

11

Fork
• Inherited:

o user and group IDs
o environment
o close-on-exec flag 
o signal handling settings 
o supplementary group IDs
o set-user-ID mode bit
o set-group-ID mode bit
o profiling on/off/mode status 
o debugger tracing status 
o nice value 
o stdin
o scheduler class 
o all shared memory segments 
o all mapped files 
o file pointers
o non-degrading priority 
o process group ID
o session ID 
o current working directory
o root directory
o file mode creation mask 
o resource limits 
o controlling terminal
o all machine register states 
o control register(s)

• Separate in child
o process ID 
o address space (memory)
o file descriptors
o active process group ID.
o parent process ID 
o process locks, file locks, page locks, 

text locks and data locks 
o pending signals 
o timer signal reset times
o share mask

12

Exec
• Overlay current process image with a specified image file 

(system call)
o affects process memory and registers
o has no affect on file table

• Example:
execlp(“ls”, “ls”, “-l”, NULL);
fprintf(stderr, “exec failed\n”);
exit(1);



13

Exec (cont)
• Many variations of exec

int execlp(const char *file,
const char *arg, ...)

int execl(const char *path,
const char *arg, ...)

int execv(const char *path,
char * const argv[])

int execle(const char *path,
const char *arg, ...,
char * const envp[])

• Also execve and execvp

14

Fork/Exec
• Commonly used together by the shell

... parse command line ...
pid = fork() 
if (pid == -1)

fprintf(stderr, “fork failed\n”);
else if (pid == 0) {

/* in child */
execvp(file, argv);
fprintf(stderr, “exec failed\n”);

}
else {

/* in parent */
pid = wait(&status);

}
... return to top of loop ...

15

System
• Convenient way to invoke fork/exec/wait

o Forks new process
o Execs command 
o Waits until it is complete

int system(const char *cmd);

• Example:
int main(){ system(“echo Hello world”);}

16

Summary
• Operating systems manage resources

o Divide up resources (e.g., quantum time slides)
o Allocate them (e.g., process scheduling)

• A processes is a running program with its own …
o Processor state
o Address space (memory)

• Create and manage processes with ...
o fork
o exec
o wait
o system }Used in shell


