Processes

CS 217

-
Operating System

» Supports virtual machines

o Promises each process the illusion of
having whole machine to itself

* Provides services:

o Protection
Scheduling
o Memory management

User
Process

User
Process

o

o File systems

o Synchronization
o etc.

OS Kernel

Hardware

(

What is a Process?

* A process is a running program with its own ...
o Processor state
— EIP, EFLAGS, registers
o Address space (memory)
— Text, bss, data,

heap, stack User

Process

User
Process

OS Kernel

Hardware

-
Operating System

* Resource allocation
o Sharing
o Protection
o Fairness
o Higher-level abstractions

User
Process

User
Process

OS Kernel

Hardware

« Common strategies
o Chop up resources into small pieces and
allocate small pieces at fine-grain level
o Introduce level of indirection and
provide mapping from virtual resources to physical ones
o Use past history to predict future behavior

Y

(

Life Cycle of a Process

ot

]

* Running: instructions are being executed
» Waiting: waiting for some event (e.g., i/o finish)

* Ready: ready to be assigned to a processor

’@’

— (Termination

-
Context Switch

Process A Process B

Running Wontext ‘ i Waiting
’ Load CM

Save context

i T\Iﬂdconteﬂ | Waiting

Waiting Running

(

Overlap CPU with I/O operations

» Schedule CPU for process B
while process A is waiting for 1/0
o Better utilize CPU

A_ CPU /0 CPU 110 CPU 110

B- CPU /10 CPU 110 CPU 110

-
Process Control Block

 For each process, the kernel keeps track of ...
o Process state (new, ready, waiting, halted)

CPU registers (EIP, EFLAGS, EAX, EBX, ...)

CPU scheduling information (priority, queues, ...)

Memory management information (page tables, ...)

Accounting information (time limits, group ID, ...)

1/0O status information (open files, 1/0 requests, ...)

o

o
o
o
o

() ()
Fork e Wait
» Create a new process (system call) » Parent waits for a child (system call)
o child process inherits state from parent process o blocks until a child terminates
o parent and child have separate copies of that state o returns pid of the child process
o parent and child share access to any open files o returns —1 if no children exist (already exited)
o status
pid = fork(Q); Parent #include <sys/types.h>
if (pid '=0) { #include <sys/wait.h>
/* in parent */
L pid_t wait(int *status);
}*) o Child » Parent waits for a specific child to terminate
/* in child */ #include <sys/types.h>
--- #include <sys/wait.h>
pid_t waitpid(pid_t pid, int *status, int options);
% ©)
() (
Fork Exec

* Inherited:

user and group IDs
environment
close-on-exec flag

signal handling settings
supplementary group 1Ds
set-user-ID mode bit
set-group-1D mode bit

» Separate in child
o process ID
o address space (memory)
o file descriptors
o active process group ID.
o parent process ID
o process locks, file locks, page locks,

profiling on/off/mode status text locks and data locks
debugger tracing status o pending signals

nice value o timer signal reset times
stdin o share mask

scheduler class

all shared memory segments

all mapped files

file pointers

non-degrading priority

process group ID

session ID

current working directory

root directory

file mode creation mask

resource limits

controlling terminal

all machine register states

control register(s)

o

© 00 0 O0O0OOOOO® O OOO OO OO OO OO OOO O 0 O

n)

» Overlay current process image with a specified image file
(system call)
o affects process memory and registers
o has no affect on file table

» Example:
execlp(‘ls”, “Is”, “-1", NULL);
fprintf(stderr, “exec failed\n");
exit(1);

2)

» Convenient way to invoke fork/exec/wait
o Forks new process
o Execs command
o Waits until it is complete

int system(const char *cmd);

* Example:
int main()

system(“echo Hello world’);

5)

() ()
Exec (cont) Fork/Exec
« Many variations of exec « Commonly used together by the shell
int execlp(const char *file, . parse command line ...
const char *arg, ...) pid = fork()
int execl(const char *path, if (pid == -1)
) const char**arg, ---) fprintf(stderr, “fork failed\n");
int execv(const char *path, else if (pid == 0) {
char * const argv[]) - = - -
- /* in child */
int execle(const char *path, fil)
const char *arg, ..., exe?vp(e, argy)’ B} .,
char * const envp[]) fprintf(stderr, “exec failed\n");
» Also execve and execvp b
else {
/* in parent */
pid = wait(&status);
}
. return to top of loop ...
19 14/
() ()
System Summary

» Operating systems manage resources
o Divide up resources (e.g., quantum time slides)
o Allocate them (e.g., process scheduling)

» A processes is a running program with its own ...
o Processor state
o Address space (memory)

» Create and manage processes with ...
o Fork
o exec
o wailt
o system Used in shell

)

