Pointers and Arrays

CS 217

(

Pointers

* What is a pointer

o A variable whose value is the
address of another variable

o p is a pointer to variable v

11

» Operations

o &: address of (reference)

1000

o *: indirection (dereference)

» Declaration mimics use

o INt *p;
p is the address of an int
(dereference p is an integer)
o intv;
p=&v;
p stores the address of v

23

11

(

Pointer Operation Examples

» Examples of * and &
int x, y, *p;

= &X; /*

= *(&x); /*

p gets the address of x */
y gets the value pointtoby p */
same as y = X */

<K<K T
1

» Unary operators associate right to left
y = *&X; /* sameas y = *(&x) */

» Unary operators bind more tightly than binary ones
y = *p + 1; /* sameas y = (*p) + 1; */
y = *pt+; /* sameas y = *(p++); */

(

More Pointer Examples

» References (e.g., *p) are variables
int X, y, *px, *py;

pXx is the address of x
sets x to O

py also points to X
increments x to 1
setsy to 1, x to 2

pX = &X; /*
px = 0; /
Py = px; ’/*
*py += 1; /7
y = CpO++; /7~
* What about the following?

++*px
*px++

*/
*/
*/
*/
*/

Y

-
Argument Passing

 C functions pass arguments “by value”

» To pass arguments “by reference,” use pointers

-
Pointers and Arrays §§£

* Pointers can “walk along” arrays
int a[10], *p, X;

printf(“%d\n”, *p++);

void swap(int x, int y) void swap(int *x, int *y) p = &[0]; /* p getsthe address ofa[0] */
int t: int t: X = *p; /* x gets a[0] */
t = x; t = *x; x = *(p+1); /* x gets a[1] */
X =y; X =Y p=p+1; /* p pointsto a[1] */
3 y =t 3 Y=t p++ /* p pointsto a[2] */
inta=3, b=7; inta=3, b=7; .
éwap(a, b): gwap(&a, &b): * What about the following?
printf(“%d %d\n,a,b); printf(“%d %d\n”,a,b);
X = *p++;
x| 3 x| 7 X[— X[— X = ++%p3
YLl m) Y 3 Yi—m Y|—
al 3 al 3 al 3 al 7
bl 7 bl 7 bl 7 bl 3
>/ °)
4) 4)
Pointers and Arrays, cont’d §§§ Pointer Arithmetic §;§g
» Array hames are constant pointers * Pointer arithmetic takes into account the stride (size of) the
int a[10], *p, i; value pointed to
p = a; /* p pointsto a[0] */ long *p;
at+; /* lllegal; can’'t change a constant */ p +=1i; /* increments p by i elements */
p++; /* Legal; p is avariable */ p -= 1; /* decrements p by i elements */
S . . . p++; /* increments p by 1 element */
 Subscripting is defined in terms of pointers
--; /* d t by 1 el t */
a[i], *(a+i), i[a] /* Legal and the same */ P ecrements p by L efemen
&a[i], ati /* Legal and the same */ « If p and g are pointers to same type T
p = &a[0] /* &*(@a+0) > &*a > a */ p—q /* number of elements between p and q */
* Pointers can walk arrays efficiently » Does it make sense to add two pointers?
p=a;
for (i = 0; i < 10; i++)

() ()
Pointer Arithmetic, cont’d ggg Pointer & Array Parameters ggg
» Comparison operations for pointers » Formals are not constant; they are variables
o <, >, <=, >, ==, I=
o ifF (p<a ... ; » Passing an array passes a pointer to 1st element
o p and g must point to the same array
> no runtime checks to ensure this Arrays (and only arrays) are passed “by reference”
 An example void (T a[]) {. - -}
intcﬁg::lsggchar ") A is equivalent to
for (p = s; *p; p++)
; void (T *a) {. . .}
return p — s;
¥
J ~
() ()
Pointers & Strings %gg An Example: String Copy ggg
» A C string is an array of “char” with NULL at the end * Array version
void scopy(char s[], char t[1) {
» String constants denote constant pointers to actual chars It 1 =0 e
char *msg = “now is the time”; Wh"‘§+§§3['] =t = "N\07
}
char amsg[] = “now is the time”; . .
- _ . * Pointer version
char *msg = amsg; void scopy(char *s, char *t) {
/* msg points to 1st character of “now is the time” */ while (*s = *t) {
++;
* Strings can be used whenever arrays of chars are used i++;
putchar(*0123456789"[i]); b
}
static char digits[] = “0123456789"; + Idiomatic version
putchar(digits[i]); void scopy(char s[], char t[]) {
while (*s++ = *t++)
11) } 12)

(

Arrays of Pointers

» Used to build tabular structures

* Indirection “*” has lower precedence than “[]”

» Declare array of pointers to strings

char *1ine[100];
char *(1ine[100]);

» Reference examples

line[i]
*line[i]

/* refers to the i-th string */
/* referstothe O-th char of the i-th string */

-
Arrays of Pointers, cont’d

\

®

8)

* Initialization example
char *month(int n) {
static char *name[] = {
“January”, “February”, “March”, “April”,
“May”’, “June”, “July”, “August”,
“September”, “October”, ‘“November”, “December”

}:

assert(n >= 1 && n <= 12);
return name[n-1];

}

e Another example
int a, b;
int *x[] = {&a, &b, &b, &a, NULL};

)

(

Arrays of Pointers, cont’d

\

2

®

» An array of pointers is a 2-D array
int a[10][10];
int *b[10];

* Array a:
o 2-dimensional 10x10 array
Storage for 100 elements allocated at compile time
o Each row of a has 10 elements, cannot change at runtime
o a[6] is a constant

o

* Array b:
o An array of 10 pointers; each element could point to an array
o Storage for 10 pointers allocated at compile time

Values of these pointers must be initialized at runtime

Each row of b can have a different length (ragged array)

o b[6] is a variable; b[1] can change at runtime

o

o

(

More Examples

5)

» Equivalence example
void Ff(int *a[10]);
void f(int **a);

» Another equivalance example
void g(int a[][10]);
void g(int (*a)[10]);

* Legal in both f and g:

**a = 1;

)

(

Command-Line Arguments

\

®

-
Pointers to Functions

« By convention, main() is called with 2 arguments
o int main(int argc, char *argv[])
o argc is the number of arguments, including the program name
o argv is an array of pointers to the arguments

« Example:
% echo hello
argc = 2
argv[0] = “echo”
argv[1] = “hello”
argv[2] = NULL

« Implementation of echo
int main(int argc, char *argv[]) {

» Used to parameterize other functions
void sort(void *v[], int n,
int (*compare)(void *, void *)) {

if ((*compare)(V[il,vLil) <= 0) {

}._
}

« sort does not depend on the type of the object
o Such functions are called polymorphic

int i;
for (i = 1; i < argc; i++)
printf(“%s%c” ,argv[i], (i < argc-1) ? ** : \n');
return O;
b
17/ 18/
() ()
Pointers to Functions, cont’'d §§§ Pointers to Functions (cont) §§§
» Use an array of void* (generic pointers) to pass data * Invocation syntax can also confuse:
R o (*compare)(vLil, v@iD)
=void*is a placeholder calls the function pointed to by compare with
o Dereferencing a void * requires a cast to a specific type the arguments v[i] and v[j]
o ; IR o *compare(Vv[il, V[j])
Doeicrllatra(t‘l"(():r(])mS ye?rts;(((\:/iri]db*e C\(/)onif(ljjf;ng' calls the function compare with arguments v[i] and Vv{j],
b " . then dereferences the value returned
declares compare to be a “pointer to a function that takes
two void* arguments and returns an int” Function call has higher precedence than dereferencing
o Iint *compare(void *, void *)
declares compare to be a “function that takes two void * arguments
and returns a pointer to an int”
19/ 20/

C

Pointers to Functions, cont’'d @

A function name itself is a constant pointer to a function
(like an array name)
extern int strcmp(char *, char *);
main(int argc, char *argv[]) {
char *v[VSIZE];

sort(v, VSIZE, strcmp);

}

* Actually, both v and strcmp require a cast
sort((void **)v, VSIZE,
(int (*)(void *, void*))strcmp);

21

Pointers to Functions, cont’'d

* Arrays of pointers to functions
extern int mul{int, int);
extern int add(int, int);

int (Poperators[](int, int) = {
mul, add, . . .

};

* To invoke
(*operators[i])(a, b);

22

Summary @

* Pointers
o “type *" (int *p) declares a pointer variable
o *and & are the key operations

» Operation rules
o Unary operations bind more tightly than binary ones
o Pointer arithmetic operations consider size of the elements

 Pointers and arrays have a tight relationship
o An array is a constant pointer pointing to the 15t element
o A pointer can walk through elements of an array
o An array of pointers is a 2-D array (1-D fixed and another variable)
o Master how to get command-line arguments from main()

* Pointers to functions
o Can be used to parameterize functions
23

