
1

Pointers and Arrays

CS 217

2

Pointers
• What is a pointer

o A variable whose value is the
address of another variable

o p is a pointer to variable v

• Operations
o &: address of (reference)
o *: indirection (dereference)

• Declaration mimics use
o int *p;
p is the address of an int
(dereference p is an integer)

o int v;
p = &v;
p stores the address of v

11

1000

p:

0

11

23

v:

3

Pointer Operation Examples
• Examples of * and &

int x, y, *p;
p = &x; /* p gets the address of x */
y = *p; /* y gets the value point to by p */
y = *(&x); /* same as y = x */

• Unary operators associate right to left
y = *&x; /* same as y = *(&x) */

• Unary operators bind more tightly than binary ones
y = *p + 1; /* same as y = (*p) + 1; */
y = *p++; /* same as y = *(p++); */

4

More Pointer Examples
• References (e.g., *p) are variables

int x, y, *px, *py;

px = &x; /* px is the address of x */
px = 0; / sets x to 0 */
py = px; /* py also points to x */
py += 1; / increments x to 1 */
y = (*px)++; /* sets y to 1, x to 2 */

• What about the following?
++*px
*px++

5

Argument Passing
• C functions pass arguments “by value”

• To pass arguments “by reference,” use pointers
void swap(int x, int y)
{

int t;
t = x;
x = y;
y = t;

}
int a = 3, b = 7;
swap(a, b);
printf(“%d %d\n”,a,b);

void swap(int *x, int *y)
{

int t;
t = *x;
*x = *y;
*y = t;

}
int a = 3, b = 7;
swap(&a, &b);
printf(“%d %d\n”,a,b);

7
3x

y
7
3a

b
3
7x

y
7
3a

b

x
y

7
3a

b

x
y

3
7a

b
6

Pointers and Arrays
• Pointers can “walk along” arrays

int a[10], *p, x;

p = &a[0]; /* p gets the address of a[0] */
x = *p; /* x gets a[0] */
x = *(p+1); /* x gets a[1] */
p = p + 1; /* p points to a[1] */
p++; /* p points to a[2] */

• What about the following?

x = *p++;
x = ++*p;

7

Pointers and Arrays, cont’d
• Array names are constant pointers

int a[10], *p, i;
p = a; /* p points to a[0] */
a++; /* Illegal; can’t change a constant */
p++; /* Legal; p is a variable */

• Subscripting is defined in terms of pointers
a[i], *(a+i), i[a] /* Legal and the same */
&a[i], a+i /* Legal and the same */
p = &a[0] /* &*(a+0) &*a a */

• Pointers can walk arrays efficiently
p = a;
for (i = 0; i < 10; i++)

printf(“%d\n”, *p++);
8

Pointer Arithmetic
• Pointer arithmetic takes into account the stride (size of) the

value pointed to
long *p;
p += i; /* increments p by i elements */
p -= i; /* decrements p by i elements */
p++; /* increments p by 1 element */
p--; /* decrements p by 1 element */

• If p and q are pointers to same type T
p – q /* number of elements between p and q */

• Does it make sense to add two pointers?

9

Pointer Arithmetic, cont’d
• Comparison operations for pointers

o <, >, <=, >=, ==, !=
o if (p < q) ... ;
o p and q must point to the same array
o no runtime checks to ensure this

• An example

int strlen(char *s) {
char *p;
for (p = s; *p; p++)

;
return p – s;

}

10

Pointer & Array Parameters
• Formals are not constant; they are variables

• Passing an array passes a pointer to 1st element

• Arrays (and only arrays) are passed “by reference”

void f(T a[]) {. . .}

is equivalent to

void f(T *a) {. . .}

11

Pointers & Strings
• A C string is an array of “char” with NULL at the end

• String constants denote constant pointers to actual chars
char *msg = “now is the time”;

char amsg[] = “now is the time”;
char *msg = amsg;

/* msg points to 1st character of “now is the time” */
• Strings can be used whenever arrays of chars are used

putchar(“0123456789”[i]);

static char digits[] = “0123456789”;
putchar(digits[i]);

12

An Example: String Copy
• Array version

void scopy(char s[], char t[]) {
int i = 0;
while ((s[i] = t[i]) != ‘\0’)

i++;
}

• Pointer version
void scopy(char *s, char *t) {

while (*s = *t) {
s++;
t++;

}
}

• Idiomatic version
void scopy(char s[], char t[]) {

while (*s++ = *t++)
;

}

13

Arrays of Pointers
• Used to build tabular structures

• Indirection “*” has lower precedence than “[]”

• Declare array of pointers to strings

char *line[100];
char *(line[100]);

• Reference examples

line[i] /* refers to the i-th string */
line[i] / refers to the 0-th char of the i-th string */

14

Arrays of Pointers, cont’d
• Initialization example

char *month(int n) {
static char *name[] = {

“January”, “February”, “March”, “April”,
“May”, “June”, “July”, “August”,
“September”, “October”, “November”, “December”

};

assert(n >= 1 && n <= 12);
return name[n-1];

}
• Another example

int a, b;
int *x[] = {&a, &b, &b, &a, NULL};

15

Arrays of Pointers, cont’d
• An array of pointers is a 2-D array

int a[10][10];
int *b[10];

• Array a:
o 2-dimensional 10x10 array
o Storage for 100 elements allocated at compile time
o Each row of a has 10 elements, cannot change at runtime
o a[6] is a constant

• Array b:
o An array of 10 pointers; each element could point to an array
o Storage for 10 pointers allocated at compile time
o Values of these pointers must be initialized at runtime
o Each row of b can have a different length (ragged array)
o b[6] is a variable; b[i] can change at runtime

16

More Examples
• Equivalence example

void f(int *a[10]);
void f(int **a);

• Another equivalance example
void g(int a[][10]);
void g(int (*a)[10]);

• Legal in both f and g:
**a = 1;

17

Command-Line Arguments
• By convention, main() is called with 2 arguments

o int main(int argc, char *argv[])
o argc is the number of arguments, including the program name
o argv is an array of pointers to the arguments

• Example:
% echo hello
argc = 2
argv[0] = “echo”
argv[1] = “hello”
argv[2] = NULL

• Implementation of echo
int main(int argc, char *argv[]) {

int i;
for (i = 1; i < argc; i++)

printf(“%s%c”,argv[i], (i < argc-1) ? ‘ ‘ : ‘\n’);
return 0;

}
18

Pointers to Functions
• Used to parameterize other functions

void sort(void *v[], int n,
int (*compare)(void *, void *)) {

. . .
if ((*compare)(v[i],v[j]) <= 0) {

. . .
}
. . .

}
• sort does not depend on the type of the object

o Such functions are called polymorphic

19

Pointers to Functions, cont’d
• Use an array of void* (generic pointers) to pass data

•void* is a placeholder
o Dereferencing a void * requires a cast to a specific type

• Declaration syntax can be confusing:
o int (*compare)(void*, void*)

declares compare to be a “pointer to a function that takes
two void* arguments and returns an int”

o int *compare(void *, void *)
declares compare to be a “function that takes two void * arguments
and returns a pointer to an int”

20

Pointers to Functions (cont)
• Invocation syntax can also confuse:

o (*compare)(v[i], v[j])
calls the function pointed to by compare with
the arguments v[i] and v[j]

o *compare(v[i], v[j])
calls the function compare with arguments v[i] and v[j],
then dereferences the value returned

• Function call has higher precedence than dereferencing

21

Pointers to Functions, cont’d
• A function name itself is a constant pointer to a function

(like an array name)
extern int strcmp(char *, char *);
main(int argc, char *argv[]) {

char *v[VSIZE];
. . .
sort(v, VSIZE, strcmp);
. . .

}
• Actually, both v and strcmp require a cast

sort((void **)v, VSIZE,
(int (*)(void *, void*))strcmp);

22

Pointers to Functions, cont’d
• Arrays of pointers to functions

extern int mul(int, int);
extern int add(int, int);
. . .
int (*operators[])(int, int) = {

mul, add, . . .
};

• To invoke
(*operators[i])(a, b);

23

Summary
• Pointers

o “type *” (int *p) declares a pointer variable
o * and & are the key operations

• Operation rules
o Unary operations bind more tightly than binary ones
o Pointer arithmetic operations consider size of the elements

• Pointers and arrays have a tight relationship
o An array is a constant pointer pointing to the 1st element
o A pointer can walk through elements of an array
o An array of pointers is a 2-D array (1-D fixed and another variable)
o Master how to get command-line arguments from main()

• Pointers to functions
o Can be used to parameterize functions

