(~ - -
Principles

» Don’t optimize your code
o Your program might be fast enough already
o Machines are getting faster and cheaper every year
o Memory is getting denser and cheaper every year

Perfo rmance Tu N | N g o Hand optimization may make the code less readable, less robust,

and more difficult to test

» Performance tuning of bottlenecks
CS 217 o Identify performance bottlenecks
o Machine independent algorithm improvements

o Machine instruction dependent, but architecture dependent
improvements

 Try not to sacrifice correctness, readability and robustness

Y 2/
() ()
Amdahl’s Law: Only Bottlenecks Matter Examples n
* Definition of speedup: * Amdahl’'s law 1
OverallSpeedup = —
igi riginal =0+
Speedup = _Original Enhanced = Original (A= f)+
Enhanced Speedup
* What is the overall speedup if 1 1
« Amdahl’s law (1967): you make 10% of a program 90— 01 ~0oon M
times faster? 90
OverallSpeedup = :
@-f)+—
S * What is the overall speedup if 1 _ 1 e
o fis the fraction of program enhanced you make 90% of a program 10 1-09)4 99 T019
o s is the speedup of the enhanced portion times faster a-0. HE
3 Y

-
ldentify Performance Bottlenecks

» Use tools such as gprof to learn where the time goes
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name

76.21 3.46 3.46 6664590 0.00 0.00 partition
16.74 4.22 0.76 54358002 0.00 0.00 swap

3.74 4.39 0.17 1 0.17 0.17 fillArray
2.86 4.52 0.13 1 0.13 4.35 quicksort
0.44 4.54 0.02 printArray

» More sophisticated tools
o Tools that use performance counters to show cache miss/hit etc
(e.g. VTune)
o Tools for multiprocessor systems (for multi-threaded programs)
o Tools to investigate where 1/0O operations take place

-
Strategies to Speedup

« Use a better algorithm
o Complexity of the algorithm makes a big difference

» Simple code optimizations

o Loop unrolling:
for (i=0; i<N; i++)

}
» Enable compiler optimizations

o Example: use level 3 optimization in gcc:

o Extract common expression: f(x*y + x*z) + g(x*y+x*z)

x[i]=y[il;
for (i=0; i<N; i+=4) { /* if N is divisible by 4 */
x[i] = y[il;
x[i+1] = y[i+1];
x[i+2] = y[i+2];
x[i+3] = y[i+3];

o Modern compilers perform most of the above optimizations

gcc —03 foo.c
>/)
() ()
Strategies to Speedup, con’d Memory Hierarchy
 Improve performance with deep memory hierarchy » Hardware trends
o Make the code cache-aware o CPU clock rate doubles every 18-24
o Reduce the number of I/O operations months (50% per year)
. o DRAM and disk Access times improve at
* Inline procedures a rate about 10% per year
o Remove the procedure call overhead (compilers can do this) o Memory hierarchy is getting deeper (L1,
: L2 and L3 caches)
* Inline assembly
o Almost never do this unless you deal with hardware directly » Software performance has become
o Or when the high-level language is in the way more sensitive to cache misses
o Register: 1 cycle DRAM
o L1 cache hit: 2-4 cycles
o L2 cache hit: ~10 cycles
o L3 cache hit: ~50 cycles —
o L3 miss: ~500 cycles Disk
J o Disk 1/0: ~30M cycles)

[

) ()
Example: Matrix Multiply Transpose Matrix B First g
| | I |
C = A x B C = A x BT
int i, j, k; int i, j, k;
for (i=0; i<N; i++) for (i=0; i<N; i++)
for (3J=0; j<N; j++) for (J=0; j<N; j++)
for (k=0; k<N; k++) for (k=0; k<N; k++)
CLil01 += ALi1[k1 * BIKIL1; CLillil += ALi1[k1 * BTL1LKI1:
* How many cache misses? * What about the cache miss situation now?
» Execution time on tux (N=1000, -O3 with gcc): 18.5sec » Execution time on tux (N=1000, -O3 with gcc): 13sec
2 ©)
() (
A Blocked Matrix Multiply Inline Procedure
* To specify an inline procedure
. _ _ static inline int plus5(int x)
{
C = A x BT return x + 5;
}
* Is this better than using macro?
int i, j, ii, jj, k, block; #define plus5(x) (x+5)
block = 10;
for (ii=0; ii<N; ii+=block)
for (JJ=0; Jj<N; jj+=block)
for (i=ii; i<ii+block; i++)
for (J=ji; J<jjtblock; j++)
for (k=0; k<N; k++)
CLi1Li] += ALTILK] * BTOILK]:
» Execution time on tux (N=1000, -O3 with gcc): 4.4sec
11/ 12/

()

Why Inline Assembly?

» For most system modules (>99%), programming in C
delivers adequate performance

* It is more convenient to write system programs in C
o Robust programming technigues apply to C better
o Modular programming is easier
o Testing is easier

* When do you have to use assembly?
o You need to use certain instructions that the compiler don’t generate
(MMX, SSE, SSE2, and IA32 special instructions)
o You need to access some hardware, which is not possible in a high-
level language

* A compromise is to write most programs in C and as little
as possible in assembly: inline assembly

- N
Inline Assembly

 Basic format for gcc compiler

asm [volatile] ("asm-instructions"”);

__asm__ [volatile] ("asm-instructions"”);

o “asm-instructions” will be inlined into where this statement is in the C
program

o The key word “volatile” is optional: telling the gcc compiler not to
optimize away the instructions

o Need to use “\n\t” to separate instructions. Otherwise, the strings
will be concatenated without space in between.

* Example
o asm volatile("cli");

o _asm__(“pushl %eax\n\t”
“incl %eax”);

 But, to integrate assembly with C programs, we need a
contract on register and memory operands

1?) 14j
4)\ 4)\
Extended Inline Assembly Register Allocation
» Extended format » Use a single letter to specify Meaning
asm [volatile] register allocation constrain a oax
(“asm-instructions': out-regs: in-regs: used- b cbx
regs); » Example
) - B} . c ecx
o Both “asm” and “volatile” can be enclosed by “ " int add2(int a, int b) { d odx
o “volatile” is telling gcc compiler not to optimize away asm (“addl %0, %1" S asi
o “asm-instructions” are assembly instructions : D edi
o “out-regs” provide output registers (optional) "rt (@, "rt (b)); | Constant value (0 to 31)
o “in-regs” provide input registers (optional) 3 q Allocate a register from eax,
o “used-regs” list registers used in the assembly program (optional) o gcc will save and load registers ebx, ecx, and edx
for you . Allocate a register from eax,
o If you use“a”,“b”, ... “D”, you ebx, ecx, edx, esi, edi
will need to specify “%%eax”, g eax, ebx, ecx, edx
“0p0ebx” or variable in memory
’ A | eaxand edx combined into
a 64-bit integer
15j 16j

Compile with —O (Optimize) Result Is Elsewhere
C program gcc =S -0 foo.c C program gcc —S -0 foo.c
int add2(int a, int b) { _text int add2(int a, int b) { -text
_ .globl add2
asm (“addl %0, %1 -globl add2 asm volatile add2:
; Caddl %0, %1* ;
- .type) pushl %ebp
Drt (@), "'r (b) Do i movl %esp, %ebp
: 2 rt (@), "rt (b : s
) addz: @ ®) movl 8(%ebp), %edx
3 pushl %ebp } movl 12(%ebp), %eax
mov 1 %esp, Y%ebp #APP
I addl %eax, %edx
eave #NO_APP
ret leave
ret
cc optimized away the “asm” instructions! . .
9 P y The result is not in %eax.
17 18
Constrain Register Allocation Summary
C program gce -S -0 foo.c » Don’t optimize your code, unless it is really necessary
int add2(int a, int b) { -text » Use a better algorithm is choice #1
. . " w -globl add2]
asm (addl %1, %%eax add2: « Then, tune the bottleneck first (Amdahl’s law)
S egn @, "r (®)): pushl %ebp o Identify the bottlenecks by using tools
movl %esp, %ebp o Make program cache aware
¥ mov 8(%oebp)’ %fax o Reduce I/O operations
movl 12(%ebp) . %edx o Inline procedures
HAPP o Inline assembly (to access hardware including special instructions)
addl %edx, %eax y gsp
#NO_APP « Additional reading besides the textbook
:zive o Jon Bentley’s Writing Efficient Programs (Prentice-Hall, 1982),

19

Programming Pearls and More Programming Pearls (Addision
Wesley, 1986 and 1988)

o John Hennessy and David Patterson’s Computer Organization and
Design: The Hardware/Software Interface (Morgan Kaufman, 1997),,

-

What's Covered in The Final Exam?

~

o o o o o o o o o

o

o

* Rephrase: What do | expect you all to know

Master the C language

Modules, interfaces and abstract data types
Memory allocation

Robust programming

Testing

Concept of computer architecture

Basic IA32 instruction set and assembly
How assemblers and linkers work

Use UNIX system services (signal, processes and interprocess
communication)

How to write portable code

Performance tuning

* The final will be in COS 104, 1:30-3:30pm, 5/20
» Open book and open notes

2)

