
1

Operating Systems,
System Calls, and Buffered I/O

CS 217

2

What Is Operating System?

• Abstraction of hardware

• Virtualization

• Protection and security

Hardware

Operating System

emacs gcc Browser DVD Player

3

Academic Computers in 1983 and 2003

> 10:11 (or < 1)10sUsers/machine

100,000+:1< $800/1000$80k$/Performance

1:232-6416-32Address bits

1:1001GBits/sec10Mbits/secNetwork BW

1:10,000200GB20MBDisk

1:1000256M256kDRAM

100:1$800$80k$/machine

1:10003Ghz3MhzCPU clock

Ratio20031883

4

Computing and Communications
Exponential Growth! (Courtesy J. Gray)
• Performance/Price doubles every 18 months

• 100x per decade

• Progress in next 18 months
= ALL previous progress

o New storage = sum of all old storage (ever)
o New processing = sum of all old processing.

• Aggregate bandwidth doubles in 8 months

15 years ago

5

Phase 1: Hardware Expensive, Human Cheap

• User at console, OS as subroutine library

• Batch monitor (no protection): load, run, print

• Development
o Data channels, interrupts; overlap I/O and CPU
o DMA
o Memory protection: keep bugs to individual programs
o Multics: designed in 1963 and run in 1969

• Assumption: No bad people. No bad programs. Minimum
interactions

hardwareHardware

Application
OS

6

Phase 2: Hardware Cheap, Human Expensive

• Use cheap terminals to share a computer

• Time-sharing OS

• Unix enters the mainstream

• Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2. . .

7

Phase 3: HW Cheaper, Human More Expensive

• Personal computer
o Altos OS, Ethernet, Bitmap display, laser printer
o Pop-menu window interface, email, publishing SW, spreadsheet,

FTP, Telnet
o Eventually >100M unites per year

• PC operating system
o Memory protection
o Multiprogramming
o Networking

8

Phase 4: > 1 Machines per User
• Parallel and distributed systems

o Parallel machine
o Clusters
o Network is the computer

• Pervasive computers
o Wearable computers
o Computers everywhere

• OS are general and specialized

9

A Typical Operating System
• Abstraction: Layered services to access hardware

o We learn how to use the services here
o COS318 will teach how to implement

• Virtualization: Each user with its “own” machine (COS318)

• Protection & security: make the machine safe (COS318)

Hardware

OS Kernel

User
Process

User
Process

User
Process

User
Process

10

Layers of Abstraction

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Kernel

Stdio Library FILE * stream

Appl Prog
User

process
int fd

Disk

11

System Calls
• Kernel provided system services: “protected” procedure call

• Unix has ~150 system calls; see
o man 2 intro
o /usr/include/syscall.h

File System

Stdio Library

Appl Prog

open, close, read,
write, seek

fopen,fclose, printf,
fgetc, getchar,…

user
kernel

12

System Call Mechanism
• Processor modes

o User mode: can execute normal instructions and access only user
memory

o Supervisor mode: can execute normal instructions, privileged
instructions and access all of memory (e.g., devices)

• System calls
o User cannot execute privileged instructions
o Users must ask OS to execute them - system calls
o System calls are often implemented using traps (int)
o OS gains control through trap, switches to supervisor model,

performs service, switches back to user mode, and gives control
back to user (iret)

13

System-call interface = ADTs
ADT

operations

• File input/output
o open, close, read, write, dup

• Process control
o fork, exit, wait, kill, exec, ...

• Interprocess communication
o pipe, socket ...

14

open system call
NAME

open - open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, mode_t mode);

DESCRIPTION

The open() system call is used to convert a pathname into a file
descriptor (a small, non-negative integer for use in subsequent I/O
as with read, write, etc.). When the call is successful, the file
descriptor returned will be . . .

flags examples:
O_RDONLY
O_WRITE|O_CREATE

mode is the permissions
to use if file must be
created

15

close system call
NAME

close - close a file descriptor

SYNOPSIS

int close(int fd);

DESCRIPTION

close closes a file descriptor, so that it no longer refers to any file and
may be reused. Any locks held on the file it was associated with, and owned
by the process, are removed (regardless of the file descriptor that was used
to obtain the lock)

16

read System Call
NAME

read - read from a file descriptor

SYNOPSIS

int read(int fd, void *buf, int count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd
into the buffer starting at buf.
If count is zero, read() returns zero and has no other results. If
count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates
end of file), and the file position is advanced by this number. It is not
an error if this number is smaller than the number of bytes
requested On error, -1 is returned, and errno is set
appropriately.

17

write System Call
NAME

write – write to a file descriptor

SYNOPSIS

int write(int fd, void *buf, int count);

DESCRIPTION

write writes up to count bytes to the file referenced by the file descriptor fd
from the buffer starting at buf.

RETURN VALUE

On success, the number of bytes written is returned (zero indicates nothing
was written). It is not an error if this number is smaller than the number of
bytes requested On error, -1 is returned, and errno is set appropriately.

18

Making Sure It All Gets Written
int safe_write(int fd, char *buf, int nbytes)
{

int n;
char *p = buf;
char *q = buf + nbytes;
while (p < q) {

if ((n = write(fd, p, (q-p)*sizeof(char))) > 0)
p += n/sizeof(char);

else
perror(“safe_write:”);

}
return nbytes;

}

19

Buffered I/O
• Single-character I/O is usually too slow

int getchar(void) {
char c;
if (read(0, &c, 1) == 1)

return c;
else return EOF;

}

20

Buffered I/O (cont)

• Solution: read a chunk and dole out as needed

int getchar(void) {
static char buf[1024];
static char *p;
static int n = 0;
if (n--) return *p++;
n = read(0, buf, sizeof(buf));
if (n <= 0) return EOF;
p = buf;
return getchar();

}

21

Standard I/O Library
#define getc(p) (--(p)->_cnt >= 0 ? \

(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

typedef struct _iobuf {
int _cnt; /* num chars left in buffer */
char *_ptr; /* ptr to next char in buffer */
char *_base; /* beginning of buffer */
int _bufsize;/* size of buffer */
short _flag; /* open mode flags, etc. */
char _file; /* associated file descriptor */

} FILE;

extern FILE *stdin, *stdout, *stderr;

22

Why Is “getc” A Macro?
#define getc(p) (--(p)->_cnt >= 0 ? \

(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

#define getchar() getc(stdin)

• Invented in 1970s, when
o Computers had slow function-call instructions
o Compilers couldn’t inline-expand very well

• It’s not 1975 any more
o Moral: don’t invent new macros, use functions

23

fopen
FILE *fopen(char *name, char *rw) {

Use malloc to create a struct _iobuf

Determine appropriate “flags” from “rw” parameter

Call open to get the file descriptor

Fill in the _iobuf appropriately

}

24

Stdio library
• fopen, fclose

• feof, ferror, fileno, fstat
o status inquiries

• fflush
o make outside world see

changes to buffer

• fgetc, fgets, fread

• fputc fputs, fwrite

• printf, fprintf

• scanf, fscanf

• fseek

• and more ...

This (large) library interface is not
the operating-system interface;
much more room for flexibility.

This ADT is implemented in terms
of the lower-level “file-descriptor”
ADT.

25

Summary
• OS is the software between hardware and applications

o Abstraction: provide services to access the hardware
o Virtualization: Provides each process with its own machine
o Protection & security: make the environment safe

• System calls
o ADT for the user applications
o Standard I/O example
o User-level libraries layered on top of system calls

