Introduction to
Programming Systems

CS 217, Spring 2004

Kai Li
Princeton University

© 2004 Kai Li and others

[

Goals

* Master the art of programming
o Learn how to be “good” programmers
o Introduction to software engineering

* Learn languages for systems programming

o C is the systems language of choice

o Assembly is required for low-level system programming

* Introduction to computer systems
o Machine architecture
o Operating systems
o Software tools

[

Outline

* First three weeks
o C programming language

Next two weeks
o Software engineering

Next two weeks
o Machine architecture

Next two weeks
o Software tools

Next three weeks
o Unix operating system services

[

Coursework

» Six programming assignments (60%)
o Un-comment filter
o String library
o Hash table ADT
o IA32 assembly
o Profiler
o Shell

» Exams (30%)
o Midterm
o Final

* Class participation (10%)

(
Materials

2

®

* Required textbooks
o C Programming: A Modern Approach, King, 1996.
o The Practice of Programming, Kernighan and Pike, 1999.
o Programming from the Ground Up (online), Bartlett 2004.

* Recommended textbooks
o Programming with GNU Software. Loukides & Oram

* Other textbooks (on reserve)
o |A32 Intel Architecture Software Developer's Manual (online)
o The C Programming Language, Kernighan & Ritchie
o C: A Reference Manual. Harbison & Steele
o C Interfaces and Implementations. Hanson
o The UNIX Programming Environment. Kernighan & Pike

p
Facilities 2

* Unix machines
o CIT's arizona (phoenix) cluster (Sparc)
o OIT’s hats cluster (Linux)

* Your own laptop
o ssh accessto arizona (or phoenix) and hats
o run GNU tools on Windows
o run GNU tools on Linux

o Review concepts
o Demonstrate tools (gdb, makefiles, emacs, ...)
o Work through programming examples

— Precept 1: T,Th 12:30-1:30, room TBD

— Precept 2: M,W 1:30-2:30, room TBD

* Web pages
o www.cs.princeton.edu/courses/cs217/
>/ °)
() ()
Logistics ;gg Software is Hard ggg
* Lectures
o Introduce concepts . .
» Work through programming examples “What were the lessons I learned from so many years of intensive work
_ MW 10-10:50am CS105 on the practical problem of setting type by computer? One of the most
' ' important lessons, perhaps, is the fact that SOFTWARE IS HARD.
From now on | shall have significantly greater respect for every
* Precepts successful software tool that | encounter. During the past decade | was

surprised to learn that the writing of programs for TeX and Metafont
proved to be much more difficult than all the other things | had done
(like proving theorems or writing books). The creation of good software
demands a significantly higher standard of accuracy than those other
things do, and it requires a longer attention span than other intellectual
tasks.”

Donald Knuth, 1989

-
Software in COS126

Specification

2

Design

2

Programming

2

Debugging

¥

Testing

1 Person

102 Lines of Code
1 Type of Machine
0 Modifications

1 Week

-

Software in the Real World

Specification

¥

Design

2

Programming

2

Debugging

¥

Testing

VAVAVAV

Lots of People

106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

0)

-

~
Good Software in the Real World ggg

» Understandable
o Well-designed —
o Consistent
o Documented

* Robust
o Works for any input
o Tested

* Reusable
o Components

* Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

-

~
Good Software in the Real World ggg

n)

» Understandable
o Well-designed
o Consistent
o Documented

* Robust
o Works for any input
o Tested

* Reusable
o Components

* Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately

Write code in modules
that can be used elsewhere

Write code in modules

and optimize the slow ones

2)

() ()
The C Programming Language ggg Javavs. C ggg
» Systems programming language JAVA C
o Originally used to write Unix and Unix tools hello i -
o Data types and control structures close to most machines effo-jyava: hello.c-
o Now also a popular application programming language public class hello { i X
public static void #include <stdio.h>
* Notable features Program main(String[] args) { |mainQ {
o All functions are call-by-value System.out.printin(printf(“Hello, world\n™);
. . . Hello, world™); }
o Pointer (address) arithmetic }
o Simple scope structure 1
o /O and memory mgmt facilities provided by libraries % javac hello_java 7 e [ooe
: . % Is % Is
* History Compile |y perro.java hello.class |% a.out hello.c
oBCPL > B > C > K&RC > ANSIC % %
1960 1970 1972 1978 \u 1988
o LISP > Smalltalk > C++ > Java % java hello % a.out
Run % Hello, world % Hello, world
% %
1?y 14j
() ()
))
Javavs. C, cont'd ggg Javavs. C, cont'd ggg
JAVA C JAVA C
Boolean boolean int Pointer type |// no pointer int *p;
Char type char // 16-bit unicode char /* 8 bits */ class r { struct r {
- - . int x; int x;
Void type // no equivalent void Record type ;Toaz v 1I=rlloa§ yv:
byte // 8 bits } }
Integer types ?::rt 5; ég E::z ?Ezrt String sl = “Hello”; char *sl1 = “Hello”;
- String type | String s2 = new char s2[6];
long // 64 bits long string(“hello”); strcpy(s2, “hello”);
Floating float // 32 bits float Strin #include <string.h>
point types |double // 64 bits double Concgatenate sl + s2 strcat(si, s2 g;
Constant final int MAX = 1000; #define MAX 1000 LOgical &&, |1, ! &&, |1, !
int [A = new int [10]; int A[10]; Compare =, 1=, >, <, >=, <= =, 1=, >, <, >=, <=
Arrays float [1[1 B = float B[5][20]; : : .~ * /. u _ v - % /o _
new float [5][20];: Arithmetic ., =» *, /, %, unary . , %, unary
Bit-wise ops |>>, <<, >>>, &, |, © >>, <<, &, |, 7
Bound check | /7 run-time checking /* no run-time check */
lj 16j

loop

0

() ()
))
Javavs. C, cont’d §§£ Javavs. C, cont’'d §§£
JAVA C JAVA C
/* comments */ /* comments */ iT (expression) iT (expression)
Comments . . statementl statementl
// another kind Conditional else else
{ { statement2; statement2;
statementl; statementl; - "
Block statement?2; statement2; SW;;;Z gn) ¢ sw;gz gn) t
} 3
) =, *=, /=, +=, -=, <<=, =, *=, /=, +=, -=, <<=, break; break;
Assignments | oo- Suss) =) A, |2, %= | 5=, =, A=, |E, % Switch case 2: case 2:
Function / Cenl - reak -
Foo(X, v, z); Foo(X, v, z); break; break;
procedure call (¢ Y % (¢ Y % default: default:
Function return 5; return 5; T T
return
Procedure E i Throw Vi ivalent */
- - t no equivalen
return return; return; xeeption try-catch-finally q
17) 18)
() ()
) .
Javavs. C, cont'd §§§ Standard 1/0in C ;§§
e Three standard I/O streams .
JAVA c - stdin copyfile.c:
i o stdout 1 el) dio.h
P - & _— o include <stdio.h>
for” loop for (int i=0;i<10;i++) for (i=0; |<1(_), i++) stderr
) statement; .
statement; Basic calls for standard /O main() {
o while (expression) while (expression) o int getchar(void); int c:
while” loop _ N - -) ’
statement; statement; o int putchar(int c); ¢ = getcharQ);
do { do { o iInt puts(const char *s); while (c !'= EOF) {
“do- while” statement; statement; o char *gets(char *s); putchar(c);
loop Use “man” c = getchar();
. i, . a - pages >
. } while (expression) } while (expression) % man getchar 3}
Terminate a continue; continue; }
loop body
Terminatea |y o, break: % a.out < Filel > File2

%)

Formatted Output: printf ;®

C)

eint printf(char *format, ...);

o Translate arguments into characters according to “format”
o Output the formatted string to stdout

» Conversions (read “man printf” for more)
o %d — integer
o %f — float
o %lIf —double
o %3f — float with 3 decimal places
o %% —percent

» Examples
o INt X = 217;
printf(“Course number is: %d”, X);

21

Formatted Input: scanf

eint scanf(const char *format, ...);
o Read characters from stdin

o Interpret them according to “format” and put them into the
arguments

» Conversions (read “man scanf” for more)
o %d —integer
o %f — float
o %If —double
o %% — literal %

* Example
o double v;
scanf(“%lf”, &v);
o Iint day, month, year;
scanf(“%d/%d/%d”, &month, &day, &year);

22

Standard Error Handing: stderr %@:

e stderr is the second output stream for output errors

» Some functions to use stderr
o Iint fprintf(FILE *stream, const char *format, ...);
— Same as printf except the file stream
o int fputc(int c, FILE *stream);
— putc() is the same as fputc()
o int fgetc(FILE *stream);
—getc() isthesameas fgetc()

eExample
o fprintf(stderr, “This is an error.\n”);

o Fprintf(stdout, “This is correct.\n”);
o printf(“This is correct.\n”);

23

Example

#include <stdio.h>
const float KMETERS_PER MILE = 1.609;

int main(void) {
int miles;
float kmeters;

printf(“miles:);

if (scanf(“%d”, &miles) 1= 1) {
fprintf(stderr, “Error: Expect a number.\n’’);
exit(l);

+

kmeters = miles * KMETERS_PER_MILE;

printf(“= %f kilometers.\n”, kmeters);

24

4)

Summary ggg

®

» The goal of this course:
o Master the art of programming
o Learn C and assembly languages for systems programming
o Introduction to computer systems

* It is easy to learn C by knowing Java
o C is not object oriented, but many structures are similar

o Standard /O functions are quite different from Java’s input and
output

%)

