
1

Introduction to
Programming Systems

CS 217, Spring 2004

Kai Li
Princeton University

© 2004 Kai Li and others

2

Goals
• Master the art of programming

o Learn how to be “good” programmers
o Introduction to software engineering

• Learn languages for systems programming
o C is the systems language of choice
o Assembly is required for low-level system programming

• Introduction to computer systems
o Machine architecture
o Operating systems
o Software tools

3

Outline
• First three weeks

o C programming language

• Next two weeks
o Software engineering

• Next two weeks
o Machine architecture

• Next two weeks
o Software tools

• Next three weeks
o Unix operating system services

4

Coursework
• Six programming assignments (60%)

o Un-comment filter
o String library
o Hash table ADT
o IA32 assembly
o Profiler
o Shell

• Exams (30%)
o Midterm
o Final

• Class participation (10%)

5

Materials
• Required textbooks

o C Programming: A Modern Approach, King, 1996.
o The Practice of Programming, Kernighan and Pike, 1999.
o Programming from the Ground Up (online), Bartlett 2004.

• Recommended textbooks
o Programming with GNU Software. Loukides & Oram

• Other textbooks (on reserve)
o IA32 Intel Architecture Software Developer's Manual (online)
o The C Programming Language, Kernighan & Ritchie
o C: A Reference Manual. Harbison & Steele
o C Interfaces and Implementations. Hanson
o The UNIX Programming Environment. Kernighan & Pike

• Web pages
o www.cs.princeton.edu/courses/cs217/

6

Facilities
• Unix machines

o CIT’s arizona (phoenix) cluster (Sparc)
o OIT’s hats cluster (Linux)

• Your own laptop
o ssh access to arizona (or phoenix) and hats
o run GNU tools on Windows
o run GNU tools on Linux

7

Logistics
• Lectures

o Introduce concepts
o Work through programming examples

– M,W 10-10:50am CS105

• Precepts
o Review concepts
o Demonstrate tools (gdb, makefiles, emacs, …)
o Work through programming examples

– Precept 1: T,Th 12:30-1:30, room TBD
– Precept 2: M,W 1:30-2:30, room TBD

8

Software is Hard

“What were the lessons I learned from so many years of intensive work
on the practical problem of setting type by computer? One of the most
important lessons, perhaps, is the fact that SOFTWARE IS HARD.
From now on I shall have significantly greater respect for every
successful software tool that I encounter. During the past decade I was
surprised to learn that the writing of programs for TeX and Metafont
proved to be much more difficult than all the other things I had done
(like proving theorems or writing books). The creation of good software
demands a significantly higher standard of accuracy than those other
things do, and it requires a longer attention span than other intellectual
tasks.”

Donald Knuth, 1989

9

Software in COS126

Specification

Design

Programming

Debugging

Testing

1 Person
102 Lines of Code
1 Type of Machine
0 Modifications
1 Week

1 Person
102 Lines of Code
1 Type of Machine
0 Modifications
1 Week

10

Software in the Real World

Specification

Design

Programming

Debugging

Testing

Lots of People
106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

Lots of People
106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

11

Good Software in the Real World
• Understandable

o Well-designed
o Consistent
o Documented

• Robust
o Works for any input
o Tested

• Reusable
o Components

• Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately
Write code in modules

and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

Write code in modules
and optimize the slow ones

12

Good Software in the Real World
• Understandable

o Well-designed
o Consistent
o Documented

• Robust
o Works for any input
o Tested

• Reusable
o Components

• Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately
Write code in modules

and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

Write code in modules
and optimize the slow ones

13

The C Programming Language
• Systems programming language

o Originally used to write Unix and Unix tools
o Data types and control structures close to most machines
o Now also a popular application programming language

• Notable features
o All functions are call-by-value
o Pointer (address) arithmetic
o Simple scope structure
o I/O and memory mgmt facilities provided by libraries

• History
o BCPL B C K&R C ANSI C

1960 1970 1972 1978 1988
o LISP Smalltalk C++ Java

14

Java vs. C

Run

Compile

Program

% a.out
% Hello, world
%

% java hello
% Hello, world
%

% gcc hello.c
% ls
% a.out hello.c
%

% javac hello.java
% ls
% hello.java hello.class
%

hello.c:
#include <stdio.h>
main() {
printf(“Hello, world\n”);

}

hello.java:
public class hello {
public static void

main(String[] args) {
System.out.println(
“Hello, world”);

}
}

CJAVA

15

Java vs. C, cont’d

int A[10];
float B[5][20];

int [] A = new int [10];
float [][] B =

new float [5][20];
Arrays

/* no run-time check */// run-time checkingBound check

char /* 8 bits */char // 16-bit unicodeChar type
void// no equivalentVoid type

intbooleanBoolean

#define MAX 1000final int MAX = 1000;Constant

Floating
point types

Integer types

float
double

float // 32 bits
double // 64 bits

short
int
long

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

CJAVA

16

Java vs. C, cont’d

#include <string.h>
strcat(s1, s2);s1 + s2String

concatenate

+, -, *, /, %, unary -+, -, *, /, %, unary -Arithmetic
>>, <<, &, |, ^>>, <<, >>>, &, |, ^Bit-wise ops

int *p;// no pointerPointer type
struct r {

int x;
float y;

}

class r {
int x;
float y;

}
Record type

=, !=, >, <, >=, <==, !=, >, <, >=, <=Compare
Logical

String type

&&, ||, !&&, ||, !

char *s1 = “Hello”;
char s2[6];
strcpy(s2, “hello”);

String s1 = “Hello”;
String s2 = new

String(“hello”);

CJAVA

17

Java vs. C, cont’d

return 5;return 5;Function
return

Foo(x, y, z);Foo(x, y, z);Function /
procedure call

{
statement1;
statement2;

}

{
statement1;
statement2;

}
Block

Procedure
return

Assignments

Comments

return;return;

=, *=, /=, +=, -=, <<=,
>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, ^=, |=, %=

/* comments *//* comments */
// another kind

CJAVA

18

Java vs. C, cont’d

switch (n) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (n) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

Switch

/* no equivalent */Throw
try-catch-finallyException

Conditional

if (expression)
statement1

else
statement2;

if (expression)
statement1

else
statement2;

CJAVA

19

Java vs. C, cont’d

continue;continue;Terminate a
loop body

while (expression)
statement;

while (expression)
statement;“while” loop

Terminate a
loop

“do- while”
loop

“for” loop

break;break;

do {
statement;
…

} while (expression)

do {
statement;
…

} while (expression)

int i;
for (i=0; i<10; i++)

statement;for (int i=0;i<10;i++)
statement;

CJAVA

20

Standard I/O in C
• Three standard I/O streams

o stdin
o stdout
o stderr

• Basic calls for standard I/O
o int getchar(void);
o int putchar(int c);
o int puts(const char *s);
o char *gets(char *s);

• Use “man” pages
% man getchar

#include <stdio.h>

main() {
int c;
c = getchar();
while (c != EOF) {

putchar(c);
c = getchar();

}
}

% a.out < file1 > file2

copyfile.c:

21

Formatted Output: printf
•int printf(char *format, ...);

o Translate arguments into characters according to “format”
o Output the formatted string to stdout

• Conversions (read “man printf” for more)
o %d − integer
o %f − float
o %lf − double
o %3f − float with 3 decimal places
o %% −percent

• Examples
o int x = 217;
printf(“Course number is: %d”, x);

22

Formatted Input: scanf
•int scanf(const char *format, ...);

o Read characters from stdin
o Interpret them according to “format” and put them into the

arguments

• Conversions (read “man scanf” for more)
o %d − integer
o %f − float
o %lf − double
o %% − literal %

• Example
o double v;
scanf(“%lf”, &v);

o int day, month, year;
scanf(“%d/%d/%d”, &month, &day, &year);

23

Standard Error Handing: stderr
•stderr is the second output stream for output errors

• Some functions to use stderr
o int fprintf(FILE *stream, const char *format, ...);

– Same as printf except the file stream
o int fputc(int c, FILE *stream);

– putc() is the same as fputc()
o int fgetc(FILE *stream);

– getc() is the same as fgetc()
•Example

o fprintf(stderr, “This is an error.\n”);
o fprintf(stdout, “This is correct.\n”);
o printf(“This is correct.\n”);

24

Example

#include <stdio.h>

const float KMETERS_PER_MILE = 1.609;

int main(void) {
int miles;
float kmeters;

printf(“miles: ”);
if (scanf(“%d”, &miles) != 1) {

fprintf(stderr, “Error: Expect a number.\n”);
exit(1);

}
kmeters = miles * KMETERS_PER_MILE;
printf(“= %f kilometers.\n”, kmeters);

}

25

Summary
• The goal of this course:

o Master the art of programming
o Learn C and assembly languages for systems programming
o Introduction to computer systems

• It is easy to learn C by knowing Java
o C is not object oriented, but many structures are similar
o Standard I/O functions are quite different from Java’s input and

output

