
1

Modes, Registers and Addressing
and

Arithmetic Instructions
CS 217

2

Revisit IA32 General Registers
• 8 32-bit general-purpose registers (e.g. EAX)
• Each lower-half can be addressed as a 16-bit register (e.g. AX)
• Each 16-bit register can be addressed as two 8-bit registers (e.g AH and HL)

EAX: Accumulator for operands, results
EBX: Pointer to data in the DS segment.
ECX: Counter for string, loop operations.
EDX: I/O pointer.
ESI: Pointer to DS data, string source
EDI: Pointer to ES data, string destination
EBP: Pointer to data on the stack
ESP: Stack pointer (in the SS segment) SP

BP
DI
SI

DH DL
CH CL
BH BL
AH AL AX

BX
CX
DX

31 16 15 8 7 0

3

EIP Register
• Instruction Pointer or “Program Counter”

• Software change it by using
o Unconditional jump
o Conditional jump
o Procedure call
o Return

4

Segment Registers
• IA32 memory is divided into segments, pointed by segment registers

• Modern operating system and applications use the (unsegmented)
memory mode: all the segment registers are loaded with the same
segment selector so that all memory references a program makes are
to a single linear-address space.

CS: code segment register

SS: stack segment register

DS: data segment register

ES: data segment register

FS: data segment register

GS: data segment register

015

4Gbytes
address
space

0

232-1

5

EFLAG Register

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IO
P
L

N
T0R

F
V
M

A
C

V
I
F

V
I
P

I
DReserved (set to 0)

012345678910111213141516171819202131 22

Carry flag

Identification flag
Virtual interrupt pending
Virtual interrupt flag
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag

Interrupt enable flag
Direction flag

Trap flag
Sign flag
Zero flag
Auxiliary carry flag or adjust flag
Parity flag

6

Other Registers
• Floating Point Unit (FPU) (x87)

o Eight 80-bit registers (ST0, …, ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

• MMX
o Eight 64-bit registers

• SSE and SSE2
o Eight 128-bit registers
o 32-bit MXCRS register

• System
o I/O ports
o Control registers (CR0, …, CR4)
o Memory management registers (GDTR, IDTR, LDTR)
o Debug registers (DR0, …, DR7)
o Machine specific registers
o Machine check registers
o Performance monitor registers

7

Three Addressing Models
• Flat model

o The modern way of memory addressing
o All segment registers are loaded with 0

• Segmented model
o Segment registers are loaded differently
o The goal is to increase protection

• Real-addressing model
o Backward compatible with 8086
o Each segment is 64Kbytes
o Segments are laid out in 20-bit address space

8

Four Operating Modes
• Real-address mode

o Let the processor address 1Mbytes of "real" memory (20-bit address).
o Also called "unprotected" mode since operating system (such as DOS) code

runs in the same mode as the user applications.
o How: Power-up or a reset
o Why: Backward compatible with early Intel processors such as 8086
o Switch to protected mode: a single instruction

• Protected mode
o Let the processor address 4GBytes of virtual memory (32-bit address) and

will extend to 64-bit this year
o Preferred mode for a modern operating system
o Use virtual memory and provide protections.

• System management mode
o For fast state snapshot and resumption (power management)

• Virtual-8086 mode
o Allow the processor to execute 8086 code software in the protected, multi-

tasking environment

9

IA32 Operating Mode Transition

Real-Address
Mode

Virtual 8086
Mode

Protected
Mode

System
Management

Mode

Reset

Reset
or PE=0 PE=1

VM=0 VM=1

SMI#
Reset

or RSM

SMI#

RSM

SMI#

RSM

PE is a flag in control register CR0 10

Instruction
• Opcode

o What to do

• Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o I/O port

• Destination operand
o Register
o Memory location
o I/O port

• Assembly syntax
Opcode source1, [source2,] destination

11

Types of Instructions
• Data transfer: move from source to destinatio
• Arithmetic: arithmetic on integer
• Floating point: x87 FPU move, arithmetic
• Logic: bitwise logic operations
• Control transfer: conditional and unconditional jumps, procedure calls
• String: move, compare, input and output
• Flag control: Control fields in EFLAGS
• Segment register: Load far pointers for segment registers
• SIMD

o MMX: integer SIMD instructions
o SSE: 32-bit and 64-bit floating point SIMD instructions
o SSE2: 128-bit integer and float point SIMD instructions

• System
o Load special registers and set control registers (including halt)

12

Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and

exchange, I/O port, string move, etc.

13

Immediate Operands
• All arithmetic instructions allow immediate as source

operands

• Example in gcc assembly
movl $10, %eax # move 10 to EAX registe

14

Register Operands (subset)
• General-purpose:

o eax, ebx, ecx, edx, esi, edi, esp, ebp
o ax, bx, cx, dx, si, di, sp, bp
o ah, bh, ch, dh, al, bl, cl, dl

• Segment registers
o cs, ds, ss, es, fs, gs

• Assembly syntax
addl $12, %ebx

15

Memory Operands
• Addressing memory

o 8-bit is the smallest unit
o 32-bit addresses (protected mode, will be extended to 64-bit later)
o IA32 is little endian

• Examples
movb $0x4a, %al
movw $5, %ax
movl $7, %eax

A

A+3 A+2 A+1 A

A+1 A

7 0

15

31

byte

16-bit word

32-bit word

16

Effective Address

• Displacement movl foo, %eax
• Base movl (%eax), %ebx
• Base + displacement movl foo(%eax), %ebx

movl 1(%eax), %ebx
• (Index * scale) + displacement movl (,%eax,4), %ebx
• Base + (index * scale) + displacement movl foo(,%eax,4), %ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

+

1
2
3
4

* +

None

8-bit

16-bit

32-bit

Offset =

Base Index scale displacement

17

Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ^dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o rotation shift
o Bit scan
o Bit test
o Byte set on conditions

18

Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o inc(b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg(b,w,l} dest dest = ^dest
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions

19

Number Systems

20

Conversion

21

Addition

22

Multiplication

23

Machine Arithmetic

24

Signed Magnitude

25

One’s Complement

kk C ^1 =−

1
1)1(

1 ++=−
+−−+=−

C

n

baba
braba

26

Two’s Complement

1^2 +=− kk C

27

Two’s Complement (cont)

C

n

baba
braba

2

1)1(
+=−

+−−+=−

28

Sign Extension

29

Summary
• IA32 is a complex machine

o Three memory models: flat, segmented, real-address
o Four operating modes: real, protected, system mgmt, virtual 8086
o Many kinds of instructions

• Things to remember
o Five types of memory operands (immediate, base,

base+displacement, index*scale + displacement,
base+index*scale+displacement

o Two’s complement

