() ()
ggg Revisit IA32 General Registers ggg
» 8 32-bit general-purpose registers (e.g. EAX)
» Each lower-half can be addressed as a 16-bit register (e.g. AX)
» Each 16-bit register can be addressed as two 8-bit registers (e.g AH and HL)
Modes, Registers and Addressing
31 1615 87 0
and _
. . . AH AL AX EAX: Accumulator for operands, results
Arithmetic Instructions BH | BL | BX EBX:Pointer to data in the DS segment,
CH CL CX ECX: Counter for string, loop operations.
Cs 217 DH | DL DX EDX: I/O pointer.
Sl ESI: Pointer to DS data, string source
DI EDI: Pointer to ES data, string destination
BP EBP: Pointer to data on the stack
SP ESP: Stack pointer (in the SS segment)
Y 2
() ()
EIP Register ggg Segment Registers ggg
e Instruction Pointer or “Program Counter” * 1A32 memory is divided into segments, pointed by segment registers
» Software change it by using + Modern operat.lng system and applications use the (unsegmented)
U ditional i memory mode: all the segment registers are loaded with the same
° nco.n. |t|on§ Jump segment selector so that all memory references a program makes are
> Conditional jump to a single linear-address space.
o Procedure call 2321 |
o Return 15 0
CS: code segment register\
SS: stack segment register 4Gbytes
DS: data segment register address
) space
ES: data segment register
FS: data segment register
GS: data segment register) 0
3 Y

-
EFLAG Register

®

\

31 222120191817161514131211109 8 7 6 543 2 1 0
V|V 10

Reserved (set to 0) élléM§O¥PgELEEEOQOE1E
P|F L

Identification flag
Virtual interrupt pending
Virtual interrupt flag ———
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag
Direction flag
Interrupt enable flag

(

Other Registers

* Floating Point Unit (FPU) (x87)
o Eight 80-bit registers (STO, ..., ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

« MMX
o Eight 64-bit registers

SSE and SSE2
o Eight 128-bit registers
o 32-bit MXCRS register

e System
o /O ports
Control registers (CRO, ..., CR4)
Memory management registers (GDTR, IDTR, LDTR)

Three Addressing Models

2

®

* Flat model
o The modern way of memory addressing
o All segment registers are loaded with 0

* Segmented model
o Segment registers are loaded differently
o The goal is to increase protection

* Real-addressing model
o Backward compatible with 8086
o Each segment is 64Kbytes
o Segments are laid out in 20-bit address space

ggﬁ fflg% o Debug registers (DRO, ..., DR7)

Zero flag o Machine specific registers

Auxiliary carry flag or adjust flag ° ’gla(f:hme check registers

Parity flag o Performance monitor registers

Carry flag
5 6
=/ °)

(" ™ ~ ~N

Four Operating Modes

2

®

* Real-address mode
o Let the processor address 1Mbytes of "real" memory (20-bit address).
o Also called "unprotected" mode since operating system (such as DOS) code
runs in the same mode as the user applications.
o How: Power-up or a reset
o Why: Backward compatible with early Intel processors such as 8086
o Switch to protected mode: a single instruction

Protected mode

o Let the processor address 4GBytes of virtual memory (32-bit address) and
will extend to 64-bit this year

o Preferred mode for a modern operating system
o Use virtual memory and provide protections.

« System management mode
o For fast state snapshot and resumption (power management)

Virtual-8086 mode

o Allow the processor to execute 8086 code software in the protected, multi-
tasking environment

v

(

IA32 Operating Mode Transition

\

®

Real-Address
Mode

Reset

or PE=0 PE=1

System
Management
Mode

Protected
Mode

Reset

VM=0 VM=1

Virtual 8086
Mode

PE is a flag in control register CRO

(
Instruction

* Opcode
o What to do

» Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o 1/O port

« Destination operand
o Register
o Memory location
o 1/O port

» Assembly syntax
Opcode sourcel, [source2,] destination

0)

(

Types of Instructions

2

\

®

 Data transfer: move from source to destinatio

« Arithmetic: arithmetic on integer

* Floating point: x87 FPU move, arithmetic

« Logic: bitwise logic operations

« Control transfer: conditional and unconditional jumps, procedure calls
« String: move, compare, input and output

* Flag control: Control fields in EFLAGS

» Segment register: Load far pointers for segment registers

« SIMD
o MMX: integer SIMD instructions
o SSE: 32-bit and 64-bit floating point SIMD instructions
o SSEZ2: 128-bit integer and float point SIMD instructions

e System
o Load special registers and set control registers (including halt)

n)

-
Data Transfer Instructions

\

2

®

emov{b,w,l} source, dest
o General move instruction

e push{w, 1} source
pushl %ebx # equivalent instructions
subl $4, %esp
movl %ebx (%esp)

epop{w, 1} dest
popl %ebx # equivalent instructions
movl (%esp), %ebx

addl $4, %esp

* Many more in Intel manual (volume 2)

o Type conversion, conditional move, exchange, compare and
exchange, I/O port, string move, etc.

2)

(

Immediate Operands

2

\

« All arithmetic instructions allow immediate as source
operands

» Example in gcc assembly
movl $10, %eax # move 10 to EAX registe

-
Register Operands (subset)

» General-purpose:
o eax, ebx, ecx, edx, esi, edi, esp, ebp
o ax, bx, cx, dx, si, di, sp, bp
o ah, bh, ch, dh, al, bl, cl, dI

» Segment registers
o Cs, ds, ss, es, fs, gs

» Assembly syntax
addl $12, %ebx

31

5)

19 14)
() ()
Memory Operands ggg Effective Address ggg
» Addressing memory Ceax) ([eax)
o 8-bit is the smallest unit ebx ebx 1 None
o 32-bit addresses (protected mode, will be extended to 64-bit later) ecx ecx .
o IA32 is little endian _ | edx edx | |2 g-bit
Offset = esp | * 1P 17 3 16-bit
e
« Examples oy esi 4 32-bit
movb $0x4a, %al edi edi]
%ax - g
moww $5, A byte Base Index scale displacement
movl $7, %eax T
 Displacement movl foo, %eax
A+1| A | 16-bit word + Base movl (%eax), %ebx
15 « Base + displacement movl foo(%eax), %ebx
. 1 1% , %eb
A+3|A+2|A+1| A | 32-bit word movl 1(%eax), Hebx

* (Index * scale) + displacement movl (,%eax,4), %ebx

» Base + (index * scale) + displacement movl foo(,%eax,4), %ebx
1

v

[

Bitwise Logic Instructions

2

®

[

Arithmetic Instructions

2

®

» Simple instructions

and{b,w,I} source, dest
or{b,w,I} source, dest
xor{b,w,l} source, dest

dest = source & dest
dest = source | dest
dest = source " dest

not{b,w,|} dest dest = *dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

* Many more in Intel Manual (volume 2)
o Logic shift

[}

o

rotation shift
Bit scan

o Bit test
o Byte set on conditions

v)

e Simple instructions

o add{b,w,l} source, dest
o sub{b,w,l} source, dest

o inc(b,w,I} dest

o dec{b,w,l} dest
o neg(b,w,l} dest

o cmp{b,w,l} sourcel, source2

Multiply

dest = source + dest
dest = dest — source
dest=dest+1
dest=dest—1

dest = Mdest
source2 — sourcel

o mul (unsigned) or imul (signed)

mull %ebx

* Divide

edx, eax = eax * ebx

o div (unsigned) or idiv (signed)

idiv %ebx

edx = edx,eax / ebx

* Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions

8

[

Number Systems

[

Conversion

* General form of a number in base b is

U n- 1l ! 40
x =x,b tx, b . tx b txgh

+x b {+...+,\' b

where x; are the positional coefficients

* Modern computers use binary arithmetic, i.e., base 2

140,

2 | 0
Ix107+4x10 +0x10

1x27+0x2+ox2 v ox2t r1x 2t v 1x 22 rox2t vox2’
10001100,

2x8%+ 1x8 +4x8" = 2144

§x16' +Cx 16” = 8C¢

0

* To convert from decimal to binary, divide by 2 repeatedly, read

remainders up.

Hoookr POO

@
OoH
e
n|o
[N
—

g g hex
140 = 10001100 binary
e
2 1 4 octal

%)

-

Addition

* Addition in base b

" . n—1 .
x, b +x, b + X

L 0
x, b" i +xph b

i1

1 0
y pit)) n—2) ;
Tty b +y, ab Ty b b

- KA 4 - -l
+“nb +“u]h +“H

n+l

- -2 R
Z, b 2 T tzh tzgh

where §; = x, +y, +C, C =8, |/b,andz; = S;modb where § | = 0

* Addition in base 2:

00101101
+ 10011001

11000110

* the sum might have one more digit than the largest operand

-
Multiplication

2)

* Multiplication in base 2: 00101101 * 10111001

1 00101101

0 00000000

1 00101101

1 00101101

1 00101101

0 00000000

0 00000000
1 00101101

010000010000101

* The product has about as many digits as the two operands combined,
ie.

loglaxb) = log(a)+ log(h)

2)

-

Machine Arithmetic

.
2

®

-
Signed Magnitude

* Computers usually have a fixed number of binary digits (*bits™), e.g., 32
bits

* For example, using 6 bits, numbered 0 to 5 from the right
11, = 63, = 2°~1
000000, = 0

largest number

smallest number

* What is 50 + 207

110010
+ 010100

1000110
* The highest bit doesn't fit, so we get 000110, = 6,

* Spilling over the lefthand side is overflow

2)

* Sign-magnitude Notation:

bit # — 1 is the sign; 0 for +, 1 for -

bits # — 2 through 0 hold an unsigned number
6

largest number O, =31, =2 by

6]71)

smallest number I, = =31, = (2

* Addition and subtraction are complicated when signs differ
* Sign-magnitude is rarely used

2

-
One’s Complement

2

®

-k =(2"-1) -k = 11111...(n bits) - k
bit 7 — 1 is the sign; bits n — 2 through 0 hold an unsigned number

* One’s-complement Notation:

bits # — 2 through 0 hold complement of negative numbers

largest number OL1L1L, = 31, = 2° l71

100000, = 31, = —(2* '-1)
* Addition and subtraction are easy, but there are 2 representations for 0

smallest number

Nk

—kye =

(

Two’s Complement

2

®

* Two’s-complement Notation:

k=2 k=(2"1) -k +1

bit # — 1 is the sign; bits n — 2 through 0 hold an unsigned number

bits # — 2 through 0 hold the complement of a negative number plus 1
largest number 011111, = 31, = 2° l71
smallest number 100000, = 32|, = 2% note asymmetry

* To negate a 2's compl. number: first complement all the bits, then add 1

—Kkye ="k +1

Two’s Complement (cont)

* Adding 2's-complement numbers: ignore signs, add unsigned bit strings

* Signed overflow occurs if
the carry into the sign bit differs from the carry out of the sign bit

+20 010100 -20 101100
+ +17 + 010001 + -17 + 101111
-27 100101 +27 011011

* Same hardware for poth Unsigned and signed, but flags twe conditions

overflow signed overflow
carry unsigned overflow

+20 010100 -20 101100 _ n
+ - 7 4+ 111001 + + 7 4+ 000111 a_b_a+(r _1_b)+1
+13 001101 -13 110011 a-b=a+hy,
+20 010100 -20 101100
+ + 7 + 000111 + -7 + 111001
+27 011011 -27 100101

Sign Extension

a-b=a+ (r“ -1- b) +1 start with complement increment
6 000110 111001 111010 -6
a-b=a+h. +1 N
-6 111010 000101 000110 +6
+0 000000 111111 000000 -0
+1 000001 111110 111111 Shl
+31 011111 100000 100001 -31
-31 100001 011110 011111 +31
|‘ —32|‘100000|‘ 011111 ‘|100000‘| -32”
25} ZE)

e

®

2)

* To convert from a small signed integer to a larger one, copy the sign bit

+5 -5
4 bits 0101 1011
8 bits 00000101 11111011

* To convert a large signed integer to a smaller one: check trunced bits

+5 -5

8 bits 00000101 11111011

4 bits 0101 1011 OK!
+20 -20

8 bits 00010100 11101100

4 bits 0100 1100 Bad!

* Hardware does extension, but may not check for truncation; nor does C

short small = -50; long big = small;

printf("sd %d\n, small, big); -50 -50

leng big = 40000; short swmall = big;

printf ("sd %d\n", =mall, big); -25536 40000

char ¢ = 255;
printf ("sd\n", c); -1

2)

4)

Summary ggg

®

* |A32 is a complex machine
o Three memory models: flat, segmented, real-address
o Four operating modes: real, protected, system mgmt, virtual 8086
o Many kinds of instructions

» Things to remember

o Five types of memory operands (immediate, base,
base+displacement, index*scale + displacement,
base-+index*scale+displacement

o Two’s complement

J

