() ()
Networks
» Mechanism by which two processes exchange information
and coordinate activities
. . Computer Computer
Inter-process Communication @
Computer ’
CS 217 process 3%
Computer Computer

Y)
() (")

Inter-process Communication

» Sockets
o Processes can be on any machine
o Processes can be created independently
o Used for clients/servers, distributed systems, etc.

* Pipes
o Processes must be on same machine
o One process spawns the other
o Used mostly for filters

Pipes

» Provides an interprocess communication channel

Process AP § (Ut process B

* Afilter is a process that reads from stdin and writes to
stdout

stdin

—stdin | pijpe | Stdout,

int pid, p[2]:

it (pipe(p) == -1)
exit(l);

pid = fork(Q);

if (pid == 0) {

close(p[1D);
. read using p[0] as fd until EOF ...
}
else {
close(p[0]):

. write using p[1l] as fd ...
close(p[1]); /* sends EOF to reader */
wait(&status);

¥

() (
Pipes (cont) Creating a Pipe
* Many Unix tools are written as filters
o grep, sort, sed, cat, wc, awk ... Pm%&Aﬂﬁﬁ. (PMLPm%$B
 Shells support pipes
Is -1 | more Pipe is a communication channel abstraction
who | grep mary | wc o Process A can write to one end using “write” system call
Is *.[ch] | sort o Process B can read from the other end using “read” system call
cat < foo | grep bar | sort > save
» System call
int pipe(int fd[2]);
return O upon success -1 upon failure
fd[0] is open for reading
fd[1] is open for writing
» Two coordinated processes created by fork can pass
data to each other using a pipe.
>/ °)
() ()
Pipe Example Dup

« Duplicate a file descriptor (system call)
int dup(int fd);
duplicates fd as the lowest unallocated descriptor

» Commonly used to redirect stdin/stdout

» Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O _RDONLY, 0);
close(0);
dup(fd);
close(fd);

n)

() ()
Dup (cont) Pipes and Standard 1/O g
« For convenience... i t pid, p[2];
dup2(int fd1, int fd2): gg:gigg) == -1
use Td2(new) to duplicate fd1 (old) pid = forki)
closes fd2 if it was in use if (pid == 0) {
« Example: redirect stdin to “foo” gloge(p[l]))
fd = open(“foo”, O_RDONLY, 0); Cfgsgggggjg?'
dup2(fd,0); . read from stdin ...
close(fd);
else {
close(p[0]);
dup2(p[1],1);
close(p[1D):
. write to stdout ...
wait(&status);
}
2 ©)
() ()
Pipes and Exec() K&P’s Example
int pid, p[2]; zinc:uge Zsigfjalr-12> close(tty);
f (pipe(p) — _1) Include <s 10. istaf —
_exit(l);) system(char *s) { SlgTaI(SIGINT, SIG_IGN);
F_)_:: ('gork(%i { int status, pid, w, tty; gstat =
i pid == } signal (SIGQUIT, SIG_IGN);
close(p[1]); I:;uihgzzgzﬂfZéV/tty,, while (
dup2(p[0] 0) - ’ w = wait 1= pi
O_RDWR); [ait(&status)) pid
close(p[0D); if (tty == -1) { && (w 1= -1)
execl(...); fprintf(stderr, “...”); .
else {) return -1; if (w == -1) status = -1;
Close(p[O]); if ((pid - fork()) =0) { signal(SlGlNT, istat);
dup2(p[1]1,1); close(0); dup(tty); signal (SIGQUIT, gstat);
close([1j) ’ close(1); dup(tty); return status;
Wr?te tc’) stdout Closf(z‘).;hfj,Up‘(‘tﬁ}f);
wait(&status); NULL;“?QC pCsh™, LSy ,
} exit(127);

}

2)

~ ~\ ~ ~\
Unix shell (sh, csh, bash, ...) Client-Server Model

* Loop
o Read command line from stdin
o Expand wildcards
o Interpret redirections < > |

o pipe (as necessary), fork, dup, exec, wait Server
. . .. - . (file server,
« Start from code on previous slides, edit it until it's a Unix mail server,
shell! Client web server)
Web browser . -
. Passive participant
Emailer .
L Waiting to be contacted
Applications

Active participant
Initiate contacts

19 14)

s ~\ s ~\
Message Passing Network Subsystem

gﬁ'@

* Mechanism to pass data between two processes

o Sender sends a message from its memory therI Application
. . L. . eve
o Receiver receives the message and places it into its memor program
g P y S S | _ _. Socket API
» Message passing is like using a telephone TCP or UDP Reliable data stream
o Caller or unreliable data grams
o Receiver
Kernel P Routes through the internet
Level
Device Driver Transmit or receive on LAN
HW NIC Network interface card

15/ 16/

» Connect the socket to the
address of the server using the
connect() system call

» Send and receive data, using
write() and read() system calls or
send() and recv() system calls

» Bind the socket to an address

using the bind() system call. For

a server socket on the Internet,
an address consists of a port
number on the host machine.

 Listen for connections with the
listen() system call

« Accept a connection with the
accept() system call. This call
typically blocks until a client
connects with the server.

* Send and receive data

0)

() ()
Names and Addresses Socket
* Host name » Socket abstraction
o like a post office name; e.g., www.cs.princeton.edu o An end-point of network connection
« Host address o Treat like a file descriptor
o like a zip code; e.g., 128.112.92.191 » Conceptually like a telephone
o Connect to the end of a phone plug
* Port numb_er o You can speak to it and listen to it
o like a mailbox; e.g., 0-64k
17) 18)
() ()
Steps for Client and Server Creating A Socket (Install A Phone)
Client Server * Creating a socket
« Create a socket with the socket() e« Create a socket with the socket() #! nclude <sys/types.h>
system call system call #include <sys/socket.h>

int socket(int domain, int type, int protocol)
— Domain: PF_INET (Internet), PF_UNIX (local)
— Type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
— Protocol: 0 usually for IP (see /etc/protocols for details)

* Like installing a phone
o Need to what services you want
— Local or long distance
— Voice or data
— Which company do you want to use

J

(

Connecting To A Socket

 Active open a socket (like dialing a phone number)
int connect(int socket,
struct sockaddr *addr,
int addr_len)

(

\

Binding A Socket

2)

* Need to give the created socket an address to listen to
(like getting a phone number)

int bind(int socket,
struct sockaddr *addr,
int addr_len)
— Passive open on a server

2)

(

gﬁ'@

Specifying Queued Connections

* Queue connection requests (like “call waiting”)

int listen(int socket, int backlog)

— Set up the maximum number of requests that will be queued
before being denied (usually the max is 5)

(

Accepting A Socket

2)

» Wait for a call to a socket (picking up a phone when it rings)

int accept(int socket,
struct sockaddr *addr,
int addr_len)
— Return a socket which is connected to the caller
— Typically blocks until the client connects to the socket

2

-
Sending and Receiving Data

\

» Sending a message

* Receiving a message

int send(int socket, char *buf, int blen, int flags)

int recv(int socket, char *buf, int blen, int flags)

[

Close A Socket

» Done with a socket (like hanging up the phone)

close(int socket)

* Treat it just like a file descriptor

o Process communication across machines
o Socket is a common communication channels
o They are built on top of basic communication mechanisms

2)

25/ 26/
4)
Summary
* Pipes
o Process communication on the same machine
o Connecting processes with stdin and stdout
* Messages

