
1

Inter-process Communication

CS 217

2

Networks
• Mechanism by which two processes exchange information 

and coordinate activities 

Computer Computer

Computer

Computer

Computer

NetworkNetworkprocess

process

3

Inter-process Communication
• Sockets

o Processes can be on any machine
o Processes can be created independently
o Used for clients/servers, distributed systems, etc.

• Pipes
o Processes must be on same machine
o One process spawns the other
o Used mostly for filters

4

Pipes
• Provides an interprocess communication channel

• A filter is a process that reads from stdin and writes to 
stdout

Process A Process Boutput input

Filterstdin stdout



5

Pipes (cont)
• Many Unix tools are written as filters

o grep, sort, sed, cat, wc, awk ...
• Shells support pipes

ls –l | more
who | grep mary | wc
ls *.[ch] | sort
cat < foo | grep bar | sort > save

6

Creating a Pipe

• Pipe is a communication channel abstraction
o Process A can write to one end using “write” system call
o Process B can read from the other end using “read” system call

• System call
int pipe( int fd[2] );
return 0 upon success –1 upon failure
fd[0] is open for reading
fd[1] is open for writing

• Two coordinated processes created by fork can pass 
data to each other using a pipe.

Process A Process Boutput input

7

Pipe Example
int pid, p[2];
...
if (pipe(p) == -1) 

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
... read using p[0] as fd until EOF ...

}
else {

close(p[0]);
... write using p[1] as fd ...
close(p[1]); /* sends EOF to reader */
wait(&status);

} 

8

Dup
• Duplicate a file descriptor (system call)

int dup( int fd );
duplicates fd as the lowest unallocated descriptor

• Commonly used to redirect stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);



9

Dup (cont)
• For convenience…

dup2( int fd1, int fd2 );
use fd2(new) to duplicate fd1 (old)
closes fd2 if it was in use

• Example: redirect stdin to “foo”
fd = open(“foo”, O_RDONLY, 0);
dup2(fd,0);
close(fd);

10

Pipes and Standard I/O
int pid, p[2];
if (pipe(p) == -1) 

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
dup2(p[0],0);
close(p[0]);
... read from stdin ...

}
else {

close(p[0]);
dup2(p[1],1);
close(p[1]);
... write to stdout ...
wait(&status); 

}

11

Pipes and Exec()
int pid, p[2];
if (pipe(p) == -1) 

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
dup2(p[0],0);
close(p[0]);
execl(...); 

}
else {

close(p[0]);
dup2(p[1],1);
close(p[1]);
... write to stdout ...
wait(&status); 

}

12

K&P’s Example
#include <signal.h>
#include <stdio.h>

system( char *s) {
int status, pid, w, tty;
fflush(stdout);
tty = open(“/dev/tty”,

O_RDWR);
if (tty == -1) {

fprintf(stderr, “...” );
return -1;

}
if ((pid = fork()) == 0 ) {

close(0); dup(tty);
close(1); dup(tty);
close(2); dup(tty);
execlp(“sh”, “sh”, “-c”, s, NULL);
exit(127);

}

close(tty);
istat = 

signal(SIGINT, SIG_IGN);
qstat = 

signal(SIGQUIT, SIG_IGN);
while (

(w = wait(&status)) != pid
&& (w != -1)
;

if (w == -1) status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return status;

}



13

Unix shell (sh, csh, bash, ...)
• Loop

o Read command line from stdin
o Expand wildcards
o Interpret redirections   <  >  |
o pipe (as necessary), fork, dup, exec, wait

• Start from code on previous slides, edit it until it’s a Unix 
shell!

14

Client-Server Model

Server
(file server,
mail server, 
web server)

NetworkNetwork

Passive participant
Waiting to be contacted

Client
Web browser
Emailer
Applications

Active participant
Initiate contacts

15

Message Passing
• Mechanism to pass data between two processes

o Sender sends a message from its memory
o Receiver receives the message and places it into its memory

• Message passing is like using a telephone
o Caller
o Receiver

16

Network Subsystem

Application 
program

TCP or UDP

IP

Device Driver

NIC

User
Level

Kernel
Level

HW

Socket API

Reliable data stream
or unreliable data grams

Routes through the internet

Transmit or receive on LAN

Network interface card



17

Names and Addresses
• Host name

o like a post office name; e.g., www.cs.princeton.edu
• Host address

o like a zip code; e.g., 128.112.92.191

• Port number
o like a mailbox; e.g., 0-64k

18

Socket
• Socket abstraction

o An end-point of network connection
o Treat like a file descriptor

• Conceptually like a telephone
o Connect to the end of a phone plug
o You can speak to it and listen to it

NetworkNetwork

19

Steps for Client and Server
Client
• Create a socket with the socket() 

system call 

• Connect the socket to the 
address of the server using the 
connect() system call 

• Send and receive data, using 
write() and read() system calls or 
send() and recv() system calls 

Server 
• Create a socket with the socket() 

system call 

• Bind the socket to an address 
using the bind() system call. For 
a server socket on the Internet, 
an address consists of a port 
number on the host machine. 

• Listen for connections with the 
listen() system call 

• Accept a connection with the 
accept() system call. This call 
typically blocks until a client 
connects with the server. 

• Send and receive data 20

Creating A Socket (Install A Phone)
• Creating a socket

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol)
– Domain: PF_INET (Internet), PF_UNIX (local)
– Type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Protocol: 0 usually for IP (see /etc/protocols for details)

• Like installing a phone
o Need to what services you want

– Local or long distance
– Voice or data
– Which company do you want to use



21

Connecting To A Socket
• Active open a socket (like dialing a phone number)

int connect(int socket, 
struct sockaddr *addr, 
int addr_len)

22

Binding A Socket
• Need to give the created socket an address to listen to

(like getting a phone number)

int bind(int socket,
struct sockaddr *addr, 
int addr_len)

– Passive open on a server

23

Specifying Queued Connections
• Queue connection requests (like “call waiting”)

int listen(int socket, int backlog)
– Set up the maximum number of requests that will be queued 

before being denied (usually the max is 5)

24

Accepting A Socket
• Wait for a call to a socket (picking up a phone when it rings)

int accept(int socket, 
struct sockaddr *addr, 
int addr_len)

– Return a socket which is connected to the caller
– Typically blocks until the client connects to the socket



25

Sending and Receiving Data
• Sending a message

int send(int socket, char *buf, int blen, int flags)
• Receiving a message

int recv(int socket, char *buf, int blen, int flags)

26

Close A Socket
• Done with a socket (like hanging up the phone)

close(int socket)

• Treat it just like a file descriptor

27

Summary
• Pipes

o Process communication on the same machine
o Connecting processes with stdin and stdout

• Messages
o Process communication across machines
o Socket is a common communication channels
o They are built on top of basic communication mechanisms


