
1

Memory Management
in

Program Design
CS 217

2

ADT Implementation
• Recall the simple implementation of the symtable ADT:

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0

3

Memory Management Issues
• Does ADT or client “own” the data?

o Who mallocs/frees each kind of node?

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0

header

list cell

key

value

4

• What happens if,   
{SymTable_T table; . . . free(table);}
then the list cells don’t get freed!

• So, ADT must “own” headers and list cells

Who Free What

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0



5

Who Free What, cont’d
• ADT just sees    void *value;
• Value pointer might be root of big data structure, all the 

pieces need to be freed.

• Thus, client must “own” the value nodes.

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0

6

Who Owns The Key?
• Both client and ADT “know” about   char *key;
• Therefore, we are faced with a design choice

• Choice 1: client owns the key.
o Consequence: must call SymTable_put only with a string that will 

last a long time. (But our client didn’t do that!)

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0

7

Previous Example Overwrites “line”

int main(int argc, char *argv[]) {
char line[MAXLINE]; 
SymTable_T table = SymTable_new();
struct stats *v; 
while (fgets(line, MAXLINE, stdin)) {
v = SymTable_get(table, line);
if (!v) {

v = makeStats(0);
SymTable_put(table, line, v);

}
SymTable_map(table, maybeprint, NULL);
return EXIT_SUCCESS;

}
8

Choice 2: ADT owns the key
• Consequence: SymTable_put must copy its key

argument into a newly malloc’ed string object.

table “header” node
a long string\0
value1 (belongs to client)

value2 (belongs to client)
another string\0



9

Put Away Your Toys…
• When client is done with a symbol table, it should give the 

memory back.

• But client can’t call free directly (as we already demonstrated)

• So there must be an interface function for client to say “I’m 
done with this”

• It should free the header, list cells, strings
SymTable_free(SymTable_T table);

• Should it free the values?
o Can’t do it by calling free directly (as we already demonstrated)
o Another design choice!

10

Options to Free Values
• Option 1:  Client frees all the values before calling 
SymTable_free(table)
o Can do this using SymTable_map(table, free_it, NULL);
o Minor bother: temporarily leaves dangling pointers in the table
o Minor bother: it’s clumsy

• Option 2:  SymTable_free calls client function
void SymTable_free(SymTable_T table, 

void (*f)(char *key, void *value, void *extra),
void *extra);

/* Free entire table.  During this process, if f is not NULL, apply f to 
each binding in table. It is a checked runtime error for table to be 
NULL. */ 

• We will choose Option 1.

11

An Overview of Computer Architecture

CS 217

12

A Typical Computer 

CPU

ChipsetMemory
I/O bus

CPU. . .

Network

ROM



13

A Typical Computer System

MemoryCPU

CPU

...

OS
Apps
Data

Network

Application

Operating System

ROM

BIOS

14

OS Service Examples
• Examples that are not provided at user level

o System calls: file open, close, read and write
o Control the CPU so that users won’t stuck by running

– while ( 1 ) ;
o Protection: 

– Keep user programs from crashing OS
– Keep user programs from crashing each other

• Examples that can be provided at user level
o Read time of the day
o Protected user level stuff

15

Processor Management

• Goals
o Overlap between I/O and 

computation
o Time sharing
o Multiple CPU allocations

• Issues
o Do not waste CPU resources
o Synchronization and mutual 

exclusion
o Fairness and deadlock free

CPU I/O CPU

CPU

I/O

CPU

CPU
I/O

CPU

CPU

CPU

16

Memory Management

• Goals
o Support programs to run
o Allocation and management
o Transfers from and to secondary 

storage

• Issues
o Efficiency & convenience
o Fairness
o Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Tapes: >1000M x



17

I/O Device Management
• Goals

o Interactions between devices and 
applications

o Ability to plug in new devices

• Issues
o Efficiency
o Fairness
o Protection and sharing

User 1 User n. . .

Library support

I/O
device

I/O
device. . .

Driver Driver

18

What Is An Application?
• An application has its “own” CPU, memory, and I/O

• “Own” CPU is virtual CPU 

• “Own” memory is virtual memory
o Text = code, constant data
o Data = initialized global and static variables
o BSS = (Block Started by Symbol) 

uninitialized (zero) global & static variables
o Stack = local variables
o Heap = dynamic memory

• “Own” I/O devices are virtual

• I/O and CPU may overlap

0

0xffffffff

Text

Data

BSS

Stack

Heap

19

General Computer Architecture

Control
Unit

Cache

R
e
g
i
s
t
e
r
s

ALU

FPU

CPU

Memory

Disk Net Display

MBus

I/O Bus

20

General Instruction Execution
• CPU’s control unit executes a program

PC memory location of first instruction
while (PC != last_instr_addr)

execute(MEM[PC]);       

• Multiple phases…
o Fetch: instruction fetch; increment PC
o Execute: arithmetic instructions, compute branch target address,

compute memory addresses
o Memory access: read/write memory
o Store: write results to registers

Fetch Execute Memory Store Fetch Execute Memory Store



21

Concept of Instruction Pipelining
• A simple pipeline

• What about branch instruction?

• Modern CPUs usually have deep pipelines
o Pentium II has a 10-stage pipeline
o Pentium 4 has a 20-stage pipeline
o They all have sophisticated branch prediction mechanisms

. . .

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

22

Instructions
• High-level language 

x = a + b;
• Assembly language

movl 12(%ebp), %eax
addl 8(%ebp), %eax

• Machine code
000000110000110001000101
110010010000100001000101

Symbolic
Representation

Bit-encoded
Representation

23

Machine Code
• IA32 has variable-sized instructions

• Example:
push   %ebp 0x8B
mov %esp,%ebp 0xE589

24

Pipeline of Creating An Executable File

• gcc can compile, assemble, and link together

• Compiler part of gcc compiles a program into assembly

• Assembler compiles assembly code into relocatable object 
file

• Linker links object files into an executable

foo.c gcc asfoo.s foo.o

ldbar.c gcc asbar.s bar.o

libc.a …

a.out



25

Execution (Run An Application)
• On Unix, “loader” does the job

o Read an executable file
o Layout the code, data, heap and stack
o Dynamically link to shared libraries
o Prepare for the OS kernel to run the application

a.out loader*.o, *.a ld Application

Shared
library

26

IA32 Memory

0

232-1

Byte order is little endian

31 08 716  15

.

.

.

24  23

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7

27

IA32 Architecture Registers

General-purpose registers

Segment registers

EFLAGS register

EIP (Instruction Pointer register)

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

31 0 015
CS
DS
SS
ES
FS
GS

AX
BX
CX
DX

16-bit  32-bit

DI
SI
BP

SP

ALAH
BL
CL
DL

BH
CH
DH

8 715

28

Upcoming Lectures ...
• Mode, registers and addressing

• Arithmetic and logic Instructions

• Control transfer instructions

• Assembly directives

• Assembler


