
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #18
Scribe: Monirul I Sharif April 10, 2003

1 Review From Last Time

Last time, we were talking about how to model distributions, and we had this setup:
Given

- examples x1, . . . , xm ∈ X i.i.d from D which we are trying to model and |X| = N
- features f1, . . . , fn, where fj : X →R
- empirical average of features Êfj where,

Êfj =
1
m

m∑
i=1

fj(xi)

- and the two sets P and Q defined as:

P =
{
p : Epfj = Êfj ∀j

}

Q =
{
q of the form q(x) =

exp(
∑

j λjfj(x)
Zλ

}
We also introduced a theorem which is the duality theorem

Theorem 1 The following are equivalent:

1. q∗ = arg maxp∈P H(p)

2. q∗ = arg maxq∈Q
1
m

∑
i ln q(xi)

3. q∗ ∈ P ∩Q.

Moreover, q∗ is uniquely defined by any one of these conditions.

Today we talk about how to find this q∗. We will describe a nice simple algorithm called
the Iterative Scaling algorithm, that can be used to find q∗.

2 Iterative Scaling Algorithm

2.1 Derivation

We are looking for a sequence of these λ’s that lead to the λ’s that minimize the negative
log likelihood, i.e. maximize the likelihood.

Let us introduce some new notations. Let gλ be the linear combination of features for
a particular λ, and let qλ be the associated distribution, where:

gλ(x) =
∑
j
λjfj(x) and qλ(x) = egλ(x)/Zλ

Now, log loss is L(λ) where,

L(λ) = − 1
m

∑
i

ln qλ(xi) (1)

We are looking for a sequence of vectors ~λ1, ~λ2, ... and we want L to be going down for
each subsequent vector.

So in a single time step say from t to t+ 1 the difference can be defined as below, and
we want to upper bound this.

∆L = L(~λt+1)− L(~λt) (2)

Let ~λ′ = ~λt+1 and ~λ = ~λt. Also let αj be such that λ′j = λj + αj. From (2) we get

∆L = L(~λt+1)− L(~λt)

= − 1
m

∑
i

[
ln
egλ′(xi)

Zλ′
− ln

egλ(xi)

Zλ

]

=
1
m

∑
i

[gλ(xi)− gλ′(xi)]− lnZλ + lnZλ′ (3)

Now the first term of (3)

= − 1
m

∑
i

∑
j

αjfj(xi)

= −
∑
j

αj
m

∑
j

fj(xi)

= −
∑
j

αjÊfj (4)

Now,

Zλ′

Zλ
=

∑
x

exp

(∑
j
λ′jfj(x)

)
Zλ

=

∑
x

exp

(∑
j
λjfj(x)

)
exp

(∑
j
αjfj(x)

)
Zλ

(plugging in the value of λ′j)

=
∑
x

qλ(x) exp

∑
j

αjfj(x)

≤
∑
x

qλ(x)
∑
j

fj(x)eαj (by convexity)

=
∑
j

eαj
∑
x

qλ(x)fj(x)

=
∑
j

eαjEqλfj (5)

2

Plugging (4) and (5) into (3) we can shown that,

∆L ≤ −
∑
j

αjÊfj + ln

∑
j

eαjEqλfj

We have derived an upper bound of the change in the loss function. Now, to optimize,

we can take the derivative to choose the αj that is the smallest.

∂

∂αj
= −Êj +

Eje
αj∑

j Eje
αj

= 0 (6)

where Êj = Êfj and Ej = Eqλfj. The thing to notice is that if we have any solution for
this, say α′j we can add a constant c and get another solution, αj = α′j + c. The reason
is that the constants get cancelled. We will choose this constant in such a way that the
denominator of the second term equals 1.

By using that trick we can set

αj = ln
Êj
Ej

2.2 The Algorithm

The algorithm works iteratively by calculating successive ~λt’s in each round

for t = 1, 2, . . .

λt+1,j = λt,j + ln
Êfj
Eqλtfj

The above can be written using probability distributions.

pt+1(x) =
1
Z
× pt(x)

∏
j

(
Êfj
Eptfj

)fj(x)

We are trying to find a distribution where it has this form, and converges to q∗. Let
us try to understand this intuitively. Assume that Êfj > Eptfj (actually, we want them
to be equal). The ratio inside the product above will be greater than 1, and therefore the
distribution will concentrate more on the points with higher feature values, and therefore
increase the expected value of the distribution, bringing it closer to the empirical average.
Let us prove this.

2.3 Proving That the Algorithm Works

Theorem 2 pt → q∗ as t→∞

To prove the above, we are going to use something called an auxiliary functions.
Auxiliary function: fn A : prob distributions → R, and satisfies the following properties:

(1) continuous

3

(2) L(~λt+1)− L(~λt) ≤ A(pt) ≤ 0 we are bounding the change in the loss
(3) A(p) = 0 =⇒ Êfj = Ep[fj] ∀j (p ∈ P)

Proof: The idea is we will first show that if an auxiliary function A exists then pt converges
to q∗ and then we show that there does exist an auxiliary function.

Our First claim is A(Pt) → 0 if there does exist an auxiliary function. As A cannot
become positive, L is always decreasing. And we also know that L is always nonnegative
from its definition in (1). Therefore their differences has to converge to 0. So, A is being
squeezed and will also converge to 0.

Now let’s say

p = lim
x→∞

pt

Therefore, p ∈ Q
Now,

A(p) = A
(

lim
t→∞

pt

)
= lim

t→∞
A(pt)︸ ︷︷ ︸

by continuity of A

= 0⇒ p ∈ P︸ ︷︷ ︸
by condition (3)

So, p ∈ P ∩Q which, by the duality theorem, implies that p = q∗.
Now we plug in our choice of αj and can get the following:

∆L ≤ −
∑
j

Êj ln
Êj
Ej

= −RE (Êj || Ej)︸ ︷︷ ︸
A(pt)

A(p) = −RE (Êfj || Ep[fj])

We have found our auxiliary function because our required properties are met. First of
all, relative entropy is continuous. Second of all, it is nonnegative, and therefore its negative
is nonpositive. And finally, the last property, what happens if A(p) = 0? That means
relative entropy has to be equal to 0, and that can only happen when the two distributions
are identical. That is exactly what the third required property of our auxiliary function is.

3 Log Loss in Online Learning

Now let us change gears. We were talking about log loss. We will now look at it in a
simpler setting - the online learning model. It has applications in information theory and
portofolio management. Applications such as data compression are also connected to log
loss, especially in the online learning model.

Now let us see how log loss comes in the on-line learning model i.e. learning with expert
advice. We have a bunch of experts. Before the experts were predicting classifications, but
now as we are trying to learn a distribution, each expert predicts a distribution. The master
algorithm combines these predictions and makes a combined prediction. When an example
is seen, everybody suffers a loss, that is the log loss of that example that was observed.

So the model can be setup in the following way:

4

for t = 1, 2, . . . , T :
- each expert i is predicting dist pt,i on X
- master algorithm predicts qt (also a prob. dist.)
- observe xt ∈ X (arbitrary)
- master suffers loss = − ln qt(xt)
- expert i suffers loss = − ln pt,i(xt)

So, the algorithm observes x1, x2... xt−1, and repeatedly tries to predict the next
outcome xt. For example, consider the case that you are listening to someone talking and
you want to predict the next word that he says. You cannot predict the word exactly, but
what you can do is you can predict a probability distribution of the next word that he might
say i.e. how likely is it that each word will follow the last word.

It must be mentioned that we are not going to suppose that we have a perfect expert.
We are also not assuming that the xt’s are random, they are arbitrary.

We want to prove that the total loss or the cumulative loss of the learning algorithm is
not much worse than the loss of the best expert.

cumulative loss︷ ︸︸ ︷
−

T∑
t=1

ln qt(xt) ≤

cumulative loss of best expert︷ ︸︸ ︷
min
i

(
−
∑
t

ln pt,i(xt)

)
+ small amount (7)

Here,

pt,i(xt) = pi(xt | xt−1
1)

qt(xt) = q(xt | xt−1
1)

where, xt−1
1 means x1, . . . , xt−1

Let us talk a little bit about compression. Suppose we want to encode or compress
messages that are coming from X. Think of X as an alphabet. You have at your disposal,
a set of compression algorithms. Naturally, we want to pick the one which gives the best
compression, but we want to do that online. The set of approaches that we are working
towards is called “Universal Compression” in information theory.

3.1 Algorithm for solving this model

Let us talk about an algorithm for solving this model. Here is the motivation behind the
algorithm:
We are going to pretend:

- expert i∗ chosen uniformly random
Pr[i∗ = i] = 1/N (this is called a prior)

- sequence x1, x2,... is generated according to distribution of that expert i.e. pi∗
Pr[xt | xt−1

1 , i∗ = i] = pi(xt | xt−1
1)

We will compute

q(xt | xt−1
1) = Pr[xt | xt−1

1] (8)

5

For computing the above we just use Bayes’ rule.

Pr[xt | xt−1
1] =

∑
i

Pr
[
xt ∧ i∗ = i | xt−1

1
]

=
∑
i

Pr
[
i∗ = i | xt−1

1
]
.︸ ︷︷ ︸

calledthe“posterior′′

Pr
[
xt | xt−1

1 , i∗ = i
]︸ ︷︷ ︸

pi(xt | xt−1
1)

(9)

From Bayes’ rule we know,

Pr[B|A] =
Pr[A|B] Pr[B]

Pr[A]

Now we use Bayes’ rule for the first factor in (9)

Pr
[
i∗ = i | xt−1

1
]

=
Pr
[
xt−1

1 | i∗ = i
]
.

1/N︷ ︸︸ ︷
Pr[i∗ = i]

Pr
[
xt−1

1
] (10)

Now,

Pr
[
xt−1

1 | i∗ = i
]

= Pr[x1|i].Pr[x2|x1, i].Pr[xt−1|xt−2
1 , i]

= pi(x1).pi(x2|x1).pi(xt−1|xt−2
1)

=
t−1∏
t′=1

pi(xt′ |xt
′−1

1)

= wt,i (assume) (11)

Final simplified computation

Compute:
By using (9),(10) and (11) in (8) we get

q
(
xt|xt−1

1
)

=

the weighted average of the predictions of experts︷ ︸︸ ︷∑
i

wt,i pi(xt|xt−1
1)∑

i

wt,i︸ ︷︷ ︸
normalization

Update:

wt+1,i = wt,i . pi(xt|xt−1
1)

3.2 Comparison with previous algorithms

We have seen algorithms like this before. For example in the weighted majority algorithm
the computation step also calculated a weighted average. The update function is almost
similar. In the update rule we had βloss, where loss was 1 if we made mistake and 0 if not.
In this case we can think of that term being

β− ln pi(xt|xt−1
1)

6

If we choose β = e−1 then this term becomes pi(xt|xt−1
1). In other words, we can think of

this as not having to compute β, and that it has a natural value which is e−1.

In the next lecture we will analyze this algorithm.

7

