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1 Linear Regression (cont’d)

We are given the training set (x1, y1), ..., (xm, ym), where xi ∈ Rn , yi ∈ R. We also assume
that each (xi, yi) is independent and identically distributed (i.i.d.) with respect to the
distribution D, i.e. (x, y) ∼ D, ∀x ∈ Rn , y ∈ R. In the linear model, the goal is to find the
vector v such that Rv = E(x,y)∼D[(v · x− y2)] is minimized. Rv is called the risk and can
be considered as the analog of the generalization error in classification. Note that Rv is a
random variable that depends on the training set through the algorithm that generates v.

Let’s consider the following algorithm:

• Run the Widrow-Hoff (WH) algorithm (with parameter η ) on the training data:
S =< (x1, y1), ..., (xm, ym) >.

• This generates the outputs: w1, ...,wm.

• Output v = 1
m
∑m

t=1 wt.

Now, we will show that the expected risk for this output, v is small.

Theorem 1 Let ES [Rv] be the expectation of the risk over the different possible training
sets (samples) and Ru be the risk of an arbitrary vector u, then:

ES [Rv] ≤ min
u

[
Ru

1− η +
‖u‖2
η ·m

]
.

Proof.

• Claim 1: (v · x− y)2 ≤ 1
m

∑m
t=1(wt · x− y)2

Pf.

(v · x− y)2 =

((
1
m

∑
t

wt

)
· x− y

)2

=

(
1
m

(∑
t

(wt · x− y)

))2

≤ 1
m

∑
t

(wt · x− y)2

The inequality can easily be shown using the convexity of f(x) = x2.

• Claim 2: Let E[·] : = ES,x,y[·], then:

E[(u · xt − yt)2] = E[(u · x− y)2] = Ru

Pf. This is a result of the i.i.d. assumption.



• Claim 3: E[(wt · xt − y)2] = E[(wt · x− y)2]
Pf. This is a result of the i.i.d assumption and the fact that wt is independent of
(xt, yt).

Armed with these claims, we can prove the theorem:

ES [Rv] = E[(v · x− y)2]

≤1 E

[
1
m

∑
t

(wt · x− y)2

]
=

1
m

∑
t

E[(wt · x− y)2]

=3 1
m

∑
t

E[(wt · xt − yt)2] =
1
m
E

[∑
t

(wt · xt − yt)2

]

≤4 1
m
E

[∑
t(u · xt − yt)2

1− η +
‖u‖2
η

]
=

1
m

[∑
tE[(u · xt − yt)2]

1− η +
‖u‖2
η

]
=2 1

m

[∑m
t=1Ru

1− η +
‖u‖2
η

]
=

Ru

1− η +
‖u‖2
ηm

The first inequality (1) and the equalities (2) and (3) can easily be justified using the
corresponding claims, stated above. The inequality (4) is a result of the theorem proven in
the previous lecture. 2

2 Artificial Neural Networks

Like support vector machines (SVM) and other learning algorithms, such as boosting meth-
ods, (artificial) neural networks are powerful algorithms that are commonly used for differ-
ent learning problems. They offer ideal solutions to a variety of classification problems such
as speech, character and signal recognition, as well as functional prediction and system mod-
eling where the physical processes are not understood or are highly complex. This approach
is inspired by the way the densely interconnected, parallel structure of the mammalian brain
processes information. However, it should be noted that artificial neural networks are a very
simplified model of the brain. Artificial neural networks are built out of units called neurons
or perceptrons. Figure 1 is a illustration of a typical neuron.

Figure 1: A typical neuron

The main idea in artificial neural networks is to build a feed-forward network of neu-
rons (perceptrons). Figure 2 shows a generic multi-layer artificial network composed of 9

2



perceptrons. In the simplest case, each perceptron produces an output according to the
following linear threshold function:

h(x) =
{

1 if
∑

i wixi > t
0 else

where xi’s are the inputs to the preceptron and wi’s are the corresponding connection
weights. Note that the final output is a function of all the connection weights in the
network and the inputs to the network, i.e. ŷ = fw(x) where x and w are the input and
weight vectors of the network.

Figure 2: A typical Artificial Neural Network

Note that the goal for an artificial neural network (as any other learning algorithm) is
to achieve y = ŷ on the test data. Hence, the problem boils down to finding the weight
vector w. However, due to the discontinuous nature of the preceptron function, it is hard
to use hill-climbing methods to find a solution. Therefore, instead of the hard-thresholding
function, other sigmoid-type continuous functions are used in practice. Figure 3 is a plot
of an example for a sigmoid-type function, σ(x) = 1

1+e−x . Another common sigmoid is the
tanh(x) function.
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Figure 3: A sigmoid function

Since we have a smooth output function, gradient descent type algorithms can be em-
ployed for optimization. An elegant way to do the optimization is to work out the gradient
in a backward fashion. This algorithm is called the Backpropagation Algorithm. However,
it should be noted that gradient descent based methods suffer from local minima problems
and “flat” plateaus, where gradients don’t contain much information.
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3 Modeling Probability Distributions

Modeling and estimating probability distributions is a general problem in computational
learning theory. For example, we would like to infer the distribution of eye-colors in a
society, using a limited number of samples. Another application is modeling a probability
distribution over English word strings to use in speech recognition. Here is a couple of
examples for real-life applications of probability distribution modeling:

Example 1 A speech recognition algorithm tries to decide between the following two sen-
tences: “he sat on a chair” or “he fat on a chair”. If we have a good model of the probability
distribution, the algorithm could conclude that the first sentence is more likely.

Example 2 Let’s consider the case where we are trying to estimate the gender of a person
based on his/her height. Figure 4 shows a plot for the estimates of the conditional probability
densities. Based on these estimates, one can choose the likelier case for each sample, i.e.
the gender for which the probability density takes a higher value for a specified height.
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Figure 4: Estimated conditional probability densities

This kind of an approach, where classification is done based on the estimated probability
distributions, is called a generative approach. This approach is different from the dis-
criminative approach, where the focus is on modeling the class boundaries or the class
membership probabilities directly. For instance, in the previous example the discriminative
approach would be to try to estimate the threshold. The intuition is these approaches use
the resources more efficiently. However, the generative approach is more natural in some
cases. Finally, note that generative approaches deal with probabilities in the form: Pr(x|y),
where y is the class and x is the test data. On the other hand in discriminative techniques,
one directly estimates Pr(y|x). These two conditional probabilities are related through the
Bayes’ Rule.
Bayes’ Rule:

Pr(y|x) =
Pr(x|y)Pr(y)

Pr(x)
.
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