
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #15
Scribe: Douglas Thunen April 1, 2003

1 Linear Regression

General Framework:
Given a set of examples, (~x1, y1), . . . , (~xm, ym), where the ~xis are vectors and the yis are

values, the goal is to find ~w such that yi ≈ ~w · ~xi and Φ(~w) = min
∑
i(yi − ~w · ~xi)2.

In order to do this, we can build a matrix as shown in Equation 1 below:

Φ(~w) =

∥∥∥∥∥∥∥∥∥∥


~xT1
~xT2
...
~xTm




w1
w2
...
wm

−


y1
y2
...
ym


∥∥∥∥∥∥∥∥∥∥

2

(1)

and then minimize based on setting the gradient equal to zero, where each component of
the gradient is calculated as

∂Φ
∂wj

= 2
∑

(~w · xi − yi)xi,j

We can therefore write the gradient as a vector of all of the derivatives in terms of the
matrix from Equation 1:

∇~wΦ =


∂Φ
∂w1
...
∂Φ
∂wi

 = 2
∑

(~w · ~xi − yi)~xi = 2MT (M ~w − b) (2)

where M =


~xT1
~xT2
...
~xTm

, ~w =


w1
w2
...
wm

, and b =


y1
y2
...
ym


Thus, setting the gradient equal to zero, we can calculate ~w:

2MT (M ~w − b) = 0
MTM ~w = MT b

~w = (MTM)−1MT b

where the quantity (MTM)−1MT is known as the “pseudoinverse.” (It can be computed
whenever MTM is invertible, but even if MTM is not invertible, it is still possible to find
~w using some other method, e.g. gradient descent.)

While this is useful in that it describes the minimum loss function on the training set,
we would also like to be able to prove bounds on new data. In order to address this problem,
we next examine an online learning model.



2 Online Model

In the case of an online model, instead of working with a certain batch of examples, the
algorithm receives one example at a time. The algorithm then needs to make a prediction
about the next y value based on the observed example x.

The general idea in this case, then, is the following:

For t=1,2,. . . ,T:

1. Get ~xt ∈ Rn

2. Predict ŷt = ~wt · ~xt

3. Observe yt ∈ R

Where the goal is to minimize the loss function, L, relative to the best loss we could get
from any vector ~u, more specifically:

minimize L =
∑
t(~wt · ~xt − yt)2 relative to L~u =

∑
t(~u · ~xt − yt)2 for “best” ~u

2.1 Real World Example - Echo Cancellation

An example of where this method is used (or at least used to be), is in echo cancellation in
long distance telephone calls.

The problem is that a small amount of what one person says leaks through to the return
connection, and is thus transmitted back to the original speaker and heard as an echo.
The goal of echo cancellation, then, is to try to predict that echo so that the system can
introduce the negative of the echo on the return wire in order to cancel it out.

A solution, in simplified terms, is to use a learning algorithm (Widrow-Hoff) that takes
a small, say 100ms, window into the past, ~xt, and from that try to predict what would be
heard at some point on the return, yt. The idea is to determine a vector ~w, where ~w · ~xt is
a good approximation of yt.

2.2 Widrow-Hoff Algorithm (LMS or Least Mean Squares)

How is the weight vector ~w maintained and updated?

~w1 = 0
~wt+1 = ~wt − η(~wt · ~xt − yt)~xt

where η is the learning rate and 0 < η < 1

Vector ~w is thus updated by simply subtracting a constant (η) times the gradient from the
previous value of ~w. There are two motivations for this update rule:

1. (gradient descent) ~wt is known, ~xt and yt have just been seen, and ~w must be adjusted.
The loss is

L(~wt, ~xt, yt) = (~wt · ~xt − yt)2

2



As such, the update to ~w should move ~w so that L ↓. One method of doing this is to
compute the gradient and move in its negative direction:

∇L(~wt) = 2(~wt · ~xt − yt)~xt

and then take a small step in the direction that causes L to decrease.

2. (More general) There are two goals:

(a) The loss, L(~wt+1, ~xt, ~yt) should be small, and thus (~wt · ~xt − yt)2 should also be
small.

(b) ~wt+1 should be close to ~wt, but then some measure of closeness is needed:
‖~wt+1 − ~wt‖2 should also be small.

To meet these goals, we can take a linear combination of the above and minimize their
sum:
Find ~wt+1 to minimize (η(~wt+1 · ~xt − yt)2 + ‖~wt+1 − ~wt‖2)
Working through the minimization, we get

~wt+1 = ~wt − η(~wt+1 · ~xt − yt)~xt

It is then possible to solve for ~wt+1 or simply use the approximation ~wt for ~wt+1 on
the right side of the previous equation.

Given this update function, we can prove the following theorem:

Theorem 1: Assume ‖~xt‖2 ≤ 1, then

L ≤ min~u
[
L~u
1−η + ‖~u‖22

η

]
Alternatively, if we divide through by T , the total number of time steps,

L
T ≤

L~u
T (1 + η) + ‖~u‖2

ηT

That is, the loss of the algorithm over the number of time steps converges to the loss of a
best vector ~u.

Note that the result is completely adversarial, i.e. it does not make any assumptions
about the input.

Proof:
We must first choose a potential function, Φ:

Φt = ‖~wt − ~u‖22, i.e. a measure of how close we are to best vector ~u

Notation: et = (~wt · ~xt − yt), gt = (~u · ~xt − yt)

Claim: Φt+1 − Φt ≤ −ηe2
t + η

1−ηg
2
t

Pf: −‖~u‖2 ≤ ‖~wt+1 − ~u‖2 − ‖~w1 − ~u‖2 = ΦT+1 −Φ1

3



= (ΦT+1 − ΦT ) + (ΦT − ΦT−1) + . . . + (Φ2 − Φ1)

≤∑t(−ηe2
t + η

1−ηg
2
t ) = −η∑t e

2
t + η

1−η
∑
t g

2
t

where
∑
t e

2
t = L and

∑
t g

2
t = L~u

We can then solve for L: L ≤ L~u
1−η + ‖~u‖2

η

Now it is necessary to compute the change in Φ: Φt+1 − Φt

‖~wt+1 − ~u‖2 − ‖~wt − ~u‖2 = ‖~wt − ~u−∆t‖2 − ‖~wt − ~u‖2

= ‖~wt − ~u‖2 − 2∆t · (~wt − ~u) + ‖∆t‖2 − ‖~wt − ~u‖2

= η2e2
t ‖~xt‖2 − 2ηet~xt · (~wt − ~u)

(since η2e2
t ‖~xt‖2 = ‖∆t‖2 and ηet~xt = ∆t)

≤ η2e2
t − 2ηet(~wt · ~xt − yt + yt − ~u · ~xt)

= (η2 − 2η)e2
t + 2ηetgt

We have a product (2ηetgt), but we want squares:
Proposition: ab ≤ a2+b2

2 ⇔ 0 ≤ a2 − 2ab+ b2 = (a− b)2

So we can choose a = gt
c , b = etc⇒ a = gt√

1−η , b = et
√

1− η

Plugging in, then: (η2 − 2η)e2
t + 2η

[
g2
t

1−η + e2
t (1− η)

]
1
2

And thus if true for any ~u, obviously true for min~u.

2.3 Comments

Where does this potential come from? How does this technique generalize?
To derive Widrow-Hoff, we found ~wt+1 to minimize η(~wt+1 ·~xt− yt)2 + ‖~wt+1− ~wt‖2. In

general, we want to minimize:

η(loss of ~wt+1 on ~xt, yt) + (distance from ~wt to ~wt+1)

So suppose loss is some function L(~wt+1, ~xt, yt). We can compute the gradient and get:

~wt+1 = ~wt − η∇L(~wt+1, ~xt, yt)

which is problematic since ~wt+1 appears on both sides of the equation. We can, however,
approximate ~wt+1 with ~wt on the right hand side.

It is also possible to generalize these concepts by working with alternate distance func-
tions, e.g. Relative Entropy:

η(~wt+1 · ~xt − yt)2 +RE(~wt‖~wt+1)

4



in which case the update function would be:

~wt+1,i = ~wt,ie
−η(~wt+1·~xt−yt)xt,i

Zt

where Zt is a normalization factor.
For this algorithm, using potential Φ = RE(~u‖~wt), it is possible to prove the following

bound on the total loss of the algorithm:∑
t(~wt · ~xt − yt) ≤ min~u

[
aη
∑
t(~u · ~xt − yt)2 + bη lnn

]
where ‖~xt‖∞ ≤ 1 and ‖~u‖1 = 1

5


