
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #14
Scribe: Eric Glover March 27, 2003

1 Winnow

review from last time
η > 0 ← learning rate
~w1,i = 1/N ← Initial distribution
for t = 1, 2, ...T ← T steps

get~xt ∈ Rn
predictŷt = sign(~wt · ~xt) Make prediction for the current step
observeyt ∈ {−1, 1}

(update:)
if yt = ŷt then ~wt+1 = ~wt We got it right, so we don’t do any updating
else

wt+1,i = wt,i
eηytxt,i

Zt
(1)

Equation 1 has the property that if the sign ofytxt,i is positive, then it will increasewt+1,i, and
if the sign is negative, it will decrease it.

1.1 Analysis

Assume||~xt||∞ ≤ 1 note:L∞ norm is the maximum absolute value of any component
∃δ > 0,~u ∈ Rn st ← ~u is the true weights
∀t yt(~u · ~xt) ≥ δ← for all examples, margin is at leastδ
||~u||1 = 1 ← Sum of the absolute value of all components ofu is 1.
ui ≥ 0
Thm:

# mistakes≤ lnN
ηδ + ln( 2

eη+e−η )
(2)

Solving for minimum value for Equation 2, we get:

# mistakes≤ 2 lnN
δ2 if η =

1
2

ln(
1 + δ

1− δ ) (3)



1.2 Proof

Measure of progress - how close~wt (predicted weights) is to~u (actual weights).
Φ = Potential function of measure of progress
Since both~u and ~wt are probability distributions, we use Relative Entropy (RE):

Φt = RE(~u||~wt) : RE(~p||~q) =
∑
i

pi ln
pi
qi

(4)

try to prove every time makes a mistakeΦ drops by some amount. Since RE always≥ 0, this
gives a bound on the total number of mistakes.

Since nothing happens when the algorithm does not make a mistake, we assume that it makes a
mistake on every round.

Φt+1 − Φt =
∑
i

uiln
ui

wt+1,i
−
∑
i

uiln
ui
wt,i

(5)

ln(
ui

wt+1,i
) = lnui − lnwt+1,i and ln(

ui
wt+1,i

) = lnui − lnwt,i (6)

Given Equation 5 and 6, you get 7:

Φt+1 − Φt =
∑
i

ui ln
wt,i
wt+1,i

=
∑
i

ui ln
Zt

eηytxt,i
(7)

=
∑
i

ui lnZt −
∑
i

uiηytxt,i (8)

= lnZt − ηyt(~u · ~xt) (9)

We know thatyt(~u · ~xt) ≥ δ and that

Zt =
∑
i

wie
ηytxt,i (10)

So how do we upper bound an exponential?
We upperbound the exponential by a linear as shown in Figure 1.
The new equation using the linear bound is:

Zt ≤
∑
i

wi

[(
1 +

yxi
2

)
eη +

(
1− yxi

2

)
e−η
]

(11)

≤
(
eη + e−η

2

)∑
i

wi +
(
eη + e−η

2

)∑
i

wiyxi (12)
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Figure 1: Upperbound an exponential on the range [-1,1] by a linear.

Since:
∑

i wi = 1, e
η+e−η

2 > 0 and since we made a mistake,yt(~wt · ~xt) ≤ 0, we can conclude
that right half is always negative, and hence the bound from Equation 12 is:

Zt ≤
eη + e−η

2
(13)

Thus:

Φt+1 − Φt ≤ ln
(
eη + e−η

2

)
− ηδ (14)

We define:c = ln
(
eη+e−η

2

)
− ηδ

Continuing:

Φ1 = RE(~u||~w) =
∑
i

ui ln(uiN) ≤
∑
i

ui lnN = lnN (15)

Thus the first round:Φ1 has an upperbound oflnN , and each additional round this value must
drop byc, as shown by Equation 14

Hence, the maximum number of mistakes is:≤ lnN
c .

If η = 1
2 ln(1+δ

1−δ ) then:c = RE(1
2 - δ2 ||

1
2) which≥ 2( δ2)2 = δ2

2

Summary:
For perceptron:1

δ2
→ Nk mistakes fork experts.

For Winnow:→ 2k2 lnN , which is better whenk << N .

1.3 What about the constraintui ≥ 0

Until now, we assumed that~u is all positive, so how do we permit components of~u to be negative,
or to correspond with negative values, without causing math problems later?

The solution is to duplicate the components of~x, but make the right half (the duplicates) nega-
tive, and to have~u broken into two halves, one for the positive components, and one for the negative
components.

For example: lets say we wanted the following:

3



~x = (1, .7,−.4) ~u = (.5, .2,−.3)
We would duplicate and invert the sign of the components of~x, so:
~x = (1, .7,−.4) → (1, .7, . − 4, −1,−.7, .4)
For~u we zero out the negative components on the left, and zero out the positive components on

the right as shown:
~u = (.5, .2,−.3) → (.5, .2, 0 0, 0, .3)
This results in the same dot product as if you used your original values for~u and~x. The resulting

algorithm is called the “balanced winnow” algorithm, and is accomplished by doubling the number
of weights as described above.

2 Estimating Probabilities of Predictions

Previous classification learning problems the goal was to minimize the probability of making a
mistake. The question is how do we estimate the probability of a given prediction.

For example:
x is the current weather conditions, andy is the prediction for tomorrow.

y =
{

1 if rain tomorrow
0 otherwise

This problem is a distribution of pairs(x, y) ∼ D. The goal is to learn to estimate a distribution:
p(x) = Pr[y = 1|x]. This is equal to the expectation orE[y|x]. In this casey is binary, although in
other problems,y might be a real. For example,y could be the amount of rain on a given day.

We defineh(x) as an estimate ofp(x) from a given expert. We wanth(x) ≈ p(x), but we never
seep(x), we only see thex values. In otherwords, there might be a 80% chance of rain, although it
might not actually rain. All we know is that it didn’t rain, not that there was an 80% chance of it.

The method is to penalizeh on (x, y) as follows:
(h(x)−y)2 is a loss function, also called a cost function, in this case, square loss, quadratic loss

or Breir score.

We have a set of predictions and(x1, y1), . . . , (xm, ym) and the actual events. We wish to
chooseh that minimizes the loss function, as in Equation 16:

∑
i

(h(xi)− yi)2 (16)

If h is unrestricted, when is the expected lossE[(h(x)−y)2] minimized? Fixx. Letp = p(x) =
Pr[y = 1], h = h(x). Then

E[(h− y)2] = p(h− 1)2 + (1− p)h2 (17)

We now minimize overh by taking the derivative with respect to h, and set equal to 0:

d

dh
= 2p(h− 1) + 2(1− p)h = 2(h− p) (18)

Equation 18 has a minimum whenh = p. Hence,the loss function is minimized when h=p.
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Continuing:

Ex[(h(x) − p(x))2︸ ︷︷ ︸
goal

] = Ex,y[(h(x)− y)2︸ ︷︷ ︸
observed

]−Ex,y[ (p(x)− y)2︸ ︷︷ ︸
Intrinsic randomness

] (19)

Note: the expectaion is over bothx, y, since it is constant in terms of h. Also, thep(x) is the
intrinsic randomness, or the variance avg over allx’s.

Prove for a singlex then average over allx’s.
Claim:

Ex[h(x)− p(x)]2 = Ex,y[(h(x) − y)2]−Ex,y[(p(x)− y)2] (20)

(h− p)2 = E[(h− y)2]−E[(p− y)2] (21)

(h− p)2 = E[h2 − 2hy + y2]−E[p2 − 2py + y2] (22)

(h− p)2 = h2 − 2h Ey︸︷︷︸
p

−p2 + 2p Ey︸︷︷︸
p

= h2 − 2hp+ p2 (23)

(h− p)2 = (h− p)2 (24)

Hence, we prove the claim from Equation 20 for a fixedx. To get the more general statement, we
only need to average over randomx. since

Ex,y[ANY ] = Ex[Ey[ANY |x]] (25)

3 EstimateE[(h(x)− y)2]

We estimateE[(h(x) − y)2] by empirical average:

Ê[(h(x)− y)2] =
1
m

∑
(h(xi)− yi)2 (26)

Lh(x, y) = (h(x) − y)2 (27)

We wantE[Lh] ' Ê[Lh] for all h ∈ H
Chernoff bounds, union bound, VC-dim, growth function can all be generalized.
Q: How to minimize loss function for training set?
One answer: Perform a linear fit as shown in Figure 2.
Given(x1, y1), . . . , (xm, ym)
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Figure 2: Fit data from h(x) with a line.

min :
∑
i

(wxi − yi)2 (28)

To minimize Equation 28 we set the derivativeddw = 2
∑

i(wxi − yi)xi to 0 and get Equation
29:

w =
∑
yixu∑
x2
i

(29)

4 Generalize to more than one dimension

given(~x1, y1), . . . , (~xm, ym), ~xi ∈ Rn, yi ∈ R
~w using prediction ruleh(~x) = ~w · ~x
loss(h) =

∑
i(~w · ~x− yi)2

minimize: ↓

=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


← ~xT1 →
← ~xT2 →
. . .

← ~xTm →


︸ ︷︷ ︸

M


w1
w2
. . .
wm


︸ ︷︷ ︸

w

−


y1
y2
. . .
ym


︸ ︷︷ ︸

b

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2
This can be solved by linear regression (next time).
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