
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #13
Scribe: Joel Predd March 25, 2003

1 Learning with Expert Advice (continued)

New goal: Compare the performance of the learner to the best combination/committee of
experts.

Formulation:
N experts
for t = 1, 2, ..., T

get −→xt ∈ {−1,+1}N
learner predicts ŷt ∈ {−1,+1}
observe outcome yt ∈ {−1,+1}
assume ∃−→u ∈ IRN s.t. yt = sgn(−→u · −→xt)

Essentially, we assume that there is a weighted majority vote amongst all N experts that
yields perfect prediction performance. Our task is to find this optimal weighted majority
vote.

General Algorithm:
Initialize −→w1
On round t:

predict ŷt = sgn(−→wt·−→xt)
update −→w t+1 using −→wt,−→xt , yt

As always, the key questions are:

1. How should we initialize −→w1?

2. How should we update −→wt?

2 Perceptron Algorithm

The perceptron algorithm is an algorithm used to find a separating hyperplane for linearly
separable data. We formulate it in a general case where our observations −→xt take on val-
ues in IRN and prove a theorem that bounds the number of errors made by the algorithm.
Then, we will apply the result to our special-case of interest when −→xt ∈ {−1,+1}N and −→xt
represents the vector of responses of our experts.

As an aside, note that the perceptron algorithm is a conservative algorithm. This is to
say that it ignores samples that it classifies correctly. Note that any mistake bounded al-
gorithm can be converted into an algorithm that is conservative.

Perceptron Algorithm:

• Initialize: −→w1 = 0

• Update:

if ŷt = yt
−−→wt+1 = −→wt

else (ŷt 6= yt)
−−→wt+1 = −→wt + yt−→xt

Note (intuition for update rule):

−→w t+1 · −→xt = (−→wt + yt · −→xt) · −→xt = −→wt · −→xt + yt ‖ −→xt ‖22 (1)

When, for instance, yt = 1 and ŷt 6= 1, then:

−→w t+1 · −→xt = −→wt · −→xt+ ‖ −→xt ‖22≥ −→wt · −→xt (2)

Thus, we see that our adjustment makes −→w t+1 · −→xt ”more positive” than −→w t · −→xt . In effect,
sgn(−→w t+1 · −→xt) is ”closer” to labelling −→xt correctly. Similar intuition holds when yt = −1
and ŷt 6= −1.

2.1 Analysis

Assumptions:

• ‖ −→xt ‖2≤ 1 (as in SVM)

• ∃−→u ∈ IRN, ∃δ > 0 s.t. yt(−→u · −→xt) ≥ δ > 0 for ∀t = 1, ..., T

• ‖ −→u ‖2= 1

Theorem 1: # of mistakes made by the perceptron algorithm ≤ 1
δ2 .

Choose our potential function as: Φt =
−→wt·−→u
‖−→wt‖2 = cos(angle between −→u and −→wt) ≤ 1.

Proof: Assume there is a mistake on every round. We can make this assumption due
to the fact that the algorithm is conservative and the weights are not adjusted when there
isn’t a mistake.

Let T = # of mistakes.

Step 1: −→w T+1 · −→u ≥ Tδ.
Proof:

−→w T+1 · −→u = (−→w T + yT−→x T) · −→u
= −→w T · −→u + yT (−→x T · −→u)
≥ −→w T · −→u + δ

= (−→w T−1 + yT−1
−→x T−1) · −→u + δ

= −→w T−1 · −→u + yT−1(−→x T−1 · −→u) + δ

2

≥ −→w T−1 · −→u + δ + δ

.

. (recursion)

.

≥ −→w1 · −→u + Tδ

= Tδ

Step 2: ‖ −→w T+1 ‖22≤ T .
Proof:

‖ −→w T+1 ‖22 = (−→w T + yT−→x T) · (−→w T + yT−→x T)
= ‖ −→w T ‖22 +2yT−→w T · −→xT + y2

T ‖ −→x T ‖22
≤ ‖ −→w T ‖22 +0 + 1
.

. (recursion)

.

≤ ‖ −→w1 ‖22 +T
= T

So, combining steps 1 and 2, we have:

δ
√
T =

Tδ√
T
≤
−→w T+1 · −→u
‖ −→w T+1 ‖2

= ΦT+1 ≤ 1 (3)

Thus,

T ≤ 1
δ2 (4)

and the proof is complete.

2.2 Committees of Experts

Let us relate the Perceptron Algorithm to the original problem.

In the originally stated problem, −→xt will have the form 1√
N

(+1,−1,−1,+1, ..., 1) (constant
for normalization) and −→u will have the form 1√

K
(0, 1, 0, 1, ..., 1) (constant for normaliza-

tion). Here, K is the number of experts in the ”best” subcommittee of N experts. We do
not assume the learner has prior knowledge of K.

Note that yt(−→u · −→xt) ≥ 1√
NK

. Thus, using 1√
NK

as δ, we see that all of the assump-
tions stated for Theorem 1 have been met. Then, by Theorem 1, if we use the Perceptron
Algorithm to learn the best weighted majority vote amongst the panel of N experts, we
can be assured that:

of mistakes ≤ NK

3

3 ”Winnow” Algorithm

The ”Winnow” Algorithm is another conservative algorithm for accomplishing the same
goal. As before, we will formulate the model in a general case and prove a theorem bound-
ing the number of mistakes made by the algorithm. Finally, we will apply the result to our
case of interest: committees of experts.

Winnow Algorithm:

• Parameter η > 0

• Initialize: w1,i = 1
N , for i = 1, ...,N

• Predict ŷt = sgn(wt · xt)

• Update on mistake:

wt+1,i = wt,i exp(ηytxt,i)
Zt

Zt =
∑
iwt,i exp(ηytxt,i)

In the original Winnow algorithm, ŷt = sgn(wt · xt + θ) for a threshold parameter θ; the
algorithm manipulates both −→wt and θ. We consider a special case where this threshold is
assumed equal to zero.

Note (intuition for update rule):
−→xt ∈ {−1,+1}N

wt+1,i ∝
{
eη, yt = xt,i
e−η, yt 6= xt,i

(5)

wt+1,i ∝
{

1, yt = xt,i
β = e−2η, yt 6= xt,i

(6)

So, we observe that it is simply the weighted majority algorithm discussed earlier.

3.1 Analysis

New Assumptions:

• ‖ −→xt ‖∞≤ 1

• ∃−→u ∈ IRN, ∃δ > 0 s.t. yt(−→u · −→xt) ≥ δ > 0 for ∀t = 1, ..., T

• ‖ −→u ‖1= 1

• ui ≥ 0 (can be removed)

Using previously derived results for weighted majority algorithms, we arrive at this theorem.

Theorem 2: # of mistakes made by the Winnow Algorithm ≤ lnN
ηδ+ln(2

eη+e−η)
.

Since η is arbitrary, we can choose it so as to minimize this upper bound. Doing so yields:

of mistakes made by the Winnow Algorithm ≤ 2 lnN
δ2

achieved when η = 1
2 ln 1+δ

1−δ .

4

3.2 Committees of Experts

Let us now apply the Winnow algorithm to our original problem. Note that the meaning
of δ has now changed due to the change in norms introduced within the assumptions.

From above, −→xt will have the form (+1,−1,−1,+1, ..., 1) and−→u will have the form 1
K (0, 1, 0, 1, ..., 1).

Thus, ‖ xt ‖∞≤ 1 and ‖ u ‖1≤ 1
K . Thus, yt(−→u · −→xt) ≥ 1

K . By noting that each of the as-
sumptions have been met and using 1

K as our δ, we can apply the above theorem to the
committee of experts problem to find that:

of mistakes made by the Winnow Algorithm ≤ 2 ln(N)K2.

We note the bound is logarithmic in N for the Winnow algorithm as compared to linear in
N for the perceptron algorithm.

5

