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1 Learning with Expert Advice (continued)

New goal: Compare the performance of the learner to the best combination/committee of
experts.

Formulation:
N experts
fort =1,2,..,T
get T € {—1,+1}V
learner predicts g; € {—1,+1}
observe outcome y; € {—1,+1}
assume 3w € RN s.t. y; = sgn(W - 77)

Essentially, we assume that there is a weighted majority vote amongst all N experts that
yields perfect prediction performance. Our task is to find this optimal weighted majority
vote.

General Algorithm:
Initialize wj
On round t:
predict y; = sgn(w;-T7)

update W11 using Wy, T{, vt

As always, the key questions are:
1. How should we initialize wi?

2. How should we update w;?

2 Perceptron Algorithm

The perceptron algorithm is an algorithm used to find a separating hyperplane for linearly
separable data. We formulate it in a general case where our observations T; take on val-
ues in RN and prove a theorem that bounds the number of errors made by the algorithm.
Then, we will apply the result to our special-case of interest when z; € {—1,+1}" and 77
represents the vector of responses of our experts.

As an aside, note that the perceptron algorithm is a conservative algorithm. This is to
say that it ignores samples that it classifies correctly. Note that any mistake bounded al-

gorithm can be converted into an algorithm that is conservative.

Perceptron Algorithm:



e Initialize: wi =0

e Update:
if 9y =
Wiyl = Wi
else ( gz # yt)
Wil = W + y Tt

Note (intuition for update rule):

W1 T = (Wi +ye - Tt) - Tf = Wi - Tf + yt”fUtHQ (1)

When, for instance, y; = 1 and ¢; # 1, then:

Wi - T = Wy - T+ || 77 3> Wi - T (2)
Thus, we see that our adjustment makes w1 - T; ”more positive” than w, - 7. In effect,
sgn(Wetq - T7) is "closer” to labelling T{ correctly. Similar intuition holds when y; = —1
and gy # —1.
2.1 Analysis

Assumptions:
o [ Z{ [2< 1 (as in SVM)
e 3w c RN, 36 >0s.t. y(w 7)) >6>0for vVt =1,...T
o | W [la=1

Theorem 1: # of mistakes made by the perceptron algorithm < %

wp-

A cos(angle between @ and wy) < 1.
2

Choose our potential function as: ®; =
Proof: Assume there is a mistake on every round. We can make this assumption due
to the fact that the algorithm is conservative and the weights are not adjusted when there
isn’t a mistake.

Let T = # of mistakes.

Step 1: Wry1-w > T6.
Proof:

Wre W = (WT + yTT’T) T
Wr - W +yr(Tr- W)
Wr-W+6
(Wr—1+yr1@7r-1) - +06
Wy - W +yr—1(Tr-1-0)+0
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Wr_ 1 T +6+6
(recursion)
wi-w+T6

Té

Step 2: || @Wr1 [3< T.
Proof:

| Wri 3 = (Wr+yrZr) (Tr+yrzr)
| @r |3 +2yr@r - 77 +yF | T |3
| wWr |3 +0+1

A

(recursion)
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So, combining steps 1 and 2, we have:

TS W W
NT="—s< = _ -9 <1 3
VT S Twra s~ TS o
Thus,
1
T< (4)

and the proof is complete.

2.2 Committees of Experts
Let us relate the Perceptron Algorithm to the original problem.

In the originally stated problem, Z; will have the form ﬁ(—i—l, —1,—-1,4+1,...,1) (constant

for normalization) and @ will have the form \/LF(O’ 1,0,1,...,1) (constant for normaliza-

tion). Here, K is the number of experts in the "best” subcommittee of N experts. We do
not assume the learner has prior knowledge of K.

1 . 1
Note that y,(w - 7) > INE Thus, using NT 8 6, we see that all of the assump-
tions stated for Theorem 1 have been met. Then, by Theorem 1, if we use the Perceptron
Algorithm to learn the best weighted majority vote amongst the panel of N experts, we

can be assured that:

# of mistakes < NK



3 7”Winnow” Algorithm

The ”Winnow” Algorithm is another conservative algorithm for accomplishing the same
goal. As before, we will formulate the model in a general case and prove a theorem bound-
ing the number of mistakes made by the algorithm. Finally, we will apply the result to our
case of interest: committees of experts.

Winnow Algorithm:

e Parameter n > 0

e Initialize: wy; = 3, fori =1,..., N
e Predict gy = sgn(wy - z)

e Update on mistake:

_ weiexp(MyeTe i)
Wi+1,i = Z:

Zy = 32 we i exp(nyee i)

In the original Winnow algorithm, ¢, = sgn(w; - ; + ) for a threshold parameter 0; the
algorithm manipulates both w; and 6. We consider a special case where this threshold is
assumed equal to zero.

Note (intuition for update rule):
T € {—1,+1}N

e,y =4y
Wil X { e_’", yi # xtz (5)
L, Yt = T
Wiy 1.5 X _ ’ 6
t+1,3 { ﬁ —¢ 2777 m 7& Ty ( )

So, we observe that it is simply the weighted majority algorithm discussed earlier.

3.1 Analysis

New Assumptions:

o [T o<1

e 3w c RN, 36 >0s.t. y(w 7)) >6>0for Vet =1,...T
o |7 [h=1

e u; > 0 (can be removed)

Using previously derived results for weighted majority algorithms, we arrive at this theorem.

In N

o Hn( =)

Theorem 2: # of mistakes made by the Winnow Algorithm <

Since 7 is arbitrary, we can choose it so as to minimize this upper bound. Doing so yields:

# of mistakes made by the Winnow Algorithm < 216112N

achieved when n = % In %.




3.2 Committees of Experts

Let us now apply the Winnow algorithm to our original problem. Note that the meaning
of 6 has now changed due to the change in norms introduced within the assumptions.

From above, Z; will have the form (—1—1 -1,-1,41,...,1) and

Thus, || ¢ [|eo< 1 and || u |1 < . Thus, yt(u xt) > . By noting that each of the as-
sumptions have been met and usmg [1( as our ¢, we can apply the above theorem to the
committee of experts problem to find that:

# of mistakes made by the Winnow Algorithm < 2In(N)K?2.

We note the bound is logarithmic in N for the Winnow algorithm as compared to linear in
N for the perceptron algorithm.

7 will have the form %(0,1,0,1,..

).



