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1 Learning with Expert Advice (cont.)

General framework:

• there are N experts

• at time t = 1, 2, . . . , T :

1. expert i predicts ξi ∈ {0, 1}
2. learner predicts ŷ ∈ {0, 1} based on experts’ predictions
3. outcome y is observed; mistake occurs if ŷ 6= y

Example 1 (from the previous lecture). We considered a special case reminiscent
of the PAC model. The crucial difference is that samples are not picked according to a
probability distribution D but they can be picked arbitrarily. We analyze the worst case
scenario. The model is as follows:

• sample space X , hypothesis space H = {h1, h2, . . . , hN}, hi : X → {0, 1};
expert i predicts according to hi

• target concept c ∈ H (picked by adversary)

• on each round:

1. observe x ∈ X (picked by adversary)
2. ξi = hi(x)
3. predict ŷ
4. observe y = c(x)

We will consider deterministic learning algorithms. For a deterministic algorithm A, let

MA(H) = max
adversary

(#mistakes of A),

and define
opt(H) = min

A
MA(H).

Theorem 1. opt(H) ≤Mhalving(H) ≤ lg |H| (proved in the previous lecture).

Theorem 2. VCdim(H) ≤ opt(H).

Proof. Let A∗ be an optimal deterministic algorithm, i.e. MA∗(H) = opt(H). Assume that
VCdim(H) = d. Let x1, . . . , xd ∈ X be shattered by H. The adversary can simulate
computation of A∗ on samples x1, . . . , xd, always producing outcome yi 6= ŷi. The concept
c∗ such that c∗(xi) = yi for all i = 1, . . . , d is in H because x1, . . . xd are shattered. Thus if
we choose c∗ and samples x1, . . . , xd then the algorithm A∗ will make d mistakes.



The bounds from the previous two theorems are tight. The tight example is H = {h :
{1, . . . , d} → {0, 1}}.

If we allow randomization then we obtain

VCdim(H)
2

≤ optrand(H) ≤M rand
randomized halving(H) ≤ lg |H|

2
,

where M rand
A = E[#mistakes A makes].

The leftmost inequality can be obtained similarly to the Theorem 2. Each yi is chosen to
be the less likely value of ŷi conditioned on the previously decided values y1, . . . , yi−1. Note
that we cannot condition on ŷ1 6= y1, . . . , ŷi−1 6= yi−1, so we potentially need to consider all
possibilities of ŷ1, . . . , ŷi−1 (with appropriate probabilities).

The second inequality in the line is trivial. The last one is somewhat involved and it
will not be presented here.

2 Weighted Majority Algorithm

If all experts are allowed to make mistakes then the halving algorithm does not work. In the
weighted majority algorithm we assign the weight wi to each expert i, and predict according
to the weighted majority of experts. Weights of experts who made a mistake in the given
round are reduced by a factor of β, where β ∈ [0, 1) is a parameter of the algorithm.

Weighted Majority Algorithm

initialize wi ← 1 for i = 1, . . . ,N
in each round t = 1, 2, . . . , T do

let q0 =
∑

i:ξi=0wi and q1 =
∑

i:ξi=1wi

ŷ =

{
1 if q1 > q0

0 otherwise

observe y
for all i such that ξi 6= y do: wi ← βwi

Theorem 3. #mistakes of learner ≤ aβ · (#mistakes of best expert) + cβ lgN, where

aβ =
lg(1/β)

lg
(

2
1+β

) , cβ =
1

lg
(

2
1+β

) .
Remark 1. Values of aβ, cβ for β = 0, 1/2, 1 are given in the following table:

β aβ cβ
1/2 ≈ 2.4 ≈ 2.4
→ 0 →∞ → 1
→ 1 → 2 →∞

The value of β = 0 corresponds to the halving algorithm.
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Remark 2. Instead of the number of mistakes, we can consider the rate of mistakes, which
is just the number of mistakes divided by the number of rounds. After T rounds we obtain:

rate of learner ≤ aβ · (rate of best expert) + cβ ·
lgN
T

,

hence the rate of learner approaches aβ-multiple of the rate of the best expert as T →∞.

Proof. Let W =
∑N

i=1wi in each step. Initially W = N , during the execution of algorithm
the value of W only decreases.

Suppose that the learner makes a mistake in the round t. Let Wright be the total weight
of experts who provided a correct prediction and Wwrong the total weight of experts who
made a mistake. Note that Wright +Wwrong = W and Wwrong ≥ Wright, so Wwrong ≥ W/2.
Therefore,

Wnew = βWwrong +Wright = βWwrong +W −Wwrong = W − (1− β)Wwrong

≤W − 1− β
2
·W =

1 + β

2
·W

Therefore, if m is the number of mistakes of learner, we obtain

Wfinal ≤ N
(

1 + β

2

)m
.

Let m be the number of mistakes of the learner and mi the number of mistakes of the expert
i. Note that the final weights wi = βmi . Thus for any fixed expert ı̂ we have

βmı̂ ≤
N∑
i=1

βmi = Wfinal.

Combine the two inequalities:

∀1 ≤ ı̂ ≤ N : βmı̂ ≤Wfinal ≤ N
(

1 + β

2

)m
,

which yields

m ≤ (minı̂mı̂) lg(1/β) + lgN

lg
(

2
1+β

) .

3 Randomized Weighted Majority

The values of q0 and q1 in the weighted majority algorithm signify the learner’s willingness
to output 0 or 1, respectively, relative to the weights of experts. Instead of predicting
according to the greater value of q0 or q1, we will predict 0 with probability q0/W and 1
with probability q1/W .

Randomized Weighted Majority Algorithm

initialize wi ← 1 for i = 1, . . . ,N
in each round t = 1, 2, . . . , T do
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let q0 =
∑

i:ξi=0wi and q1 =
∑

i:ξi=1wi

ŷ =

{
1 with probability q1/W

0 with probability q0/W

observe y
for all i such that ξi 6= y do: wi ← βwi

Theorem 4. E[#mistakes of learner] ≤ aβ · (#mistakes of best expert) + cβ lnN , where

aβ =
ln(1/β)
1− β , cβ =

1
1− β

Proof. Consider the round t. Similarly to the previous proof, let Wright be the total weight
of experts giving a correct prediction and Wwrong the total weight of experts giving an
incorrect prediction (i.e. Wright = q1,Wwrong = q0 if y = 1 and Wright = q0,Wwrong = q1 if
y = 0). Then

Wnew = βWwrong +Wright = βWwrong +W −Wwrong = W · (1− (1− β)
Wwrong

W
). (1)

Denote the quantity Wwrong/W in round t by `t. Note that it corresponds to the probability
that the learner will make a mistake in round t. Let L denote the number of mistakes of
learner and let Mt be a binary random variable equal to 1 when the learner makes a mistake
in round t, i.e. L =

∑
tMt. The expected value E[Mt] = `t, so

E[L] = E[
∑

tMt] =
∑
t

E[Mt] =
∑
t

`t.

Using (1) we obtain

Wfinal = N
∏
t

(1− `t(1− β)) ≤ N exp

{
−(1− β)

∑
t

`t

}
= N exp {−(1− β)E[L]} .

Let Li be the number of mistakes of the i-th expert. Analogous to the previous proof we
obtain

∀1 ≤ ı̂ ≤ N : βLı̂ ≤Wfinal,

and combining the two inequalities yields

E[L] ≤ (minı̂ Lı̂) ln(1/β) + lnN
1− β .

Remark 3. In case that minı̂ Lı̂ ≤ K, we can tune β to be β = (1 +
√

2 lnN/K)−1, which
yields

E[L] ≤ min
ı̂
Lı̂ +

√
2K lnN + lnN,

and in terms of mistake rates R = L/T , Ri = Li/T , K = rT ,

E[R] ≤ min
ı̂
Rı̂ +

√
2r lnN
T

+
lnN
T

,

which tends to minı̂Rı̂ as T →∞ (because K ≤ T ).
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