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1 Bounding Error on Mean

Given a set of examples xi = [0, 1] i = {1...m} drawn from a distribution D we would like
to calculate the observed mean p̂

p̂ =
1
m

m∑
i=1

xi (1)

and compare that to the real mean of D, call it p. It is useful to define the quantity

q ≡ p+ ε. (2)

We could weakly bound the probability of p̂ being greater than q using Markov’s inequality:

Pr[x ≥ kEX] ≤ 1/k (3)
Pr[p̂ ≥ s] ≤ p/s (4)

Pr[p̂ ≥ q] ≤ p/q < 1. (5)

However, we can do better than that, in fact
THEOREM

Pr[p̂ ≥ q] ≤ exp(−RE(q||p)m) (6)

where
RE(q||p) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
(7)

PROOF

Pr[p̂ ≥ q] = Pr[eλp̂m ≥ eλqm] ≤ e−λqmE [eλp̂m] (8)

= e−λqmE [eλ
∑

xi ] = e−λqmE [
m∏
i=1

eλxi ] (9)

now because each xi is an independant measurement

e−λqm
m∏
i=1

E[eλxi ]. (10)

Now note that
eλx ≤ 1− x+ eλx ∀x ∈ [0, 1] (11)

which we can use to show that

e−λqm
m∏
i=1

E[eλxi ] ≤ e−λqm
m∏
i=1

E[1− xi + eλxi] (12)

= e−λqm
m∏
i=1

(
1− p+ eλp

)
= e−λqm

(
1− p+ eλp

)m
(13)

=
(
e−λq

(
1− p+ eλp

))m
. (14)



Now if we minimize this probability with respect to lambda you get

λmin = ln
(
q(1− p)
(1− q)p

)
. (15)

Plugging that back into the probability you get the desired bound

Pr[p̂ ≥ q] ≤ exp(−RE(q||p)m) (16)

Note that by defining yi = 1− xi we can prove the symmetric result that

Pr[p̂ ≥ p− ε] ≤ exp(−RE(p− ε||p)m) (17)

This theorom can also be used to prove corollaries

Pr[p̂ ≥ p+ αp] ≤ e−mpα2/3 (18)

Pr[p̂ ≤ p− αp] ≤ e−mpα2/2 (19)

This is done by plugging in ε = αp and then bounding RE(q||p).
Thinking back to the double-sample proof: m(h) was the number of mistakes on S′.

Thus p̂ = m(h)/m and p = ε and so

Pr[m(h) < mε/2] = Pr[p̂ < p− p/2] ≤ e−mp/8. (20)

If m ≥ 8/ε then
Pr[m(h) < mε/2] ≤ e−1 < 1/2. (21)

2 McDiarmid’s Inequality

Let
f(x1, . . . , xm) (22)

be any function such that for all x1, . . . , xm;x′i,∣∣f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)

∣∣ ≤ ci. (23)

In other words, changing xi can never change f by more than ci. Let X1...Xm be indepen-
dant but not necessarily identically distributed.
THEOREM

Pr [f(x1...xm) ≥ E[f(x1...xm)] + ε] ≤ exp

(
−2ε2∑
c2i

)
(24)

3 Hoeffding

Hoeffding’s inequality
Pr[p̂ ≥ p+ ε] ≤ e−2ε2m (25)

is a special case of McDiarmid. Let

f(x1...xm) =
1
m

m∑
i=1

xi. (26)

E[f ] = p, ci = 1/m (for 0 ≤ x ≤ 1). So making use of McDiarmid’s Inequality,

Pr[p̂ ≥ p+ ε] ≤ exp

(
−2ε2∑
1/m2

)
= exp(−2ε2m) (27)
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4 General Strategy

Let

err(h) = Prx,y∼D[y 6= h(x)] (28)

ˆerr(h) =
1
m
|{i : yi 6= h(xi)}| (29)

Minimize ˆerr(h). Show close to true error, thus effectively minimizing the true error.

5 Finite Example

THEOREM Assume |H| finite. Given m random examples, with probability 1− δ

∀hεH : |err(h)− ˆerr(h)| < ε (30)

if m ≥ O
(

ln |H|+ ln(1/δ)
ε2

)
(31)

PROOF
Fix an h.

Xi = {1 if h(xi) 6= yi, 0 else}. (32)
E[Xi] = err(h) (33)

1
m

m∑
i=1

Xi = ˆerr(h) (34)

Pr[p̂ ≥ p+ ε] ≤ e−2ε2m (35)

Pr[ ˆerr(h) ≥ err(h) + ε] ≤ e−2ε2m (36)

Pr[| ˆerr(h)− err(h)| ≥ ε] ≤ 2e−2ε2m (37)

Now using union bound we can bound the probability for all h.

Pr[∃hεH : |err(h)− ˆerr(h)| ≥ ε] ≤ 2|H|e−2ε2m (38)

So by increasing m we can bound the probability. So in order to make the probability less
than δ we need

m ≥ ln(2|H|) + ln(1/δ)
ε2

(39)

Note that this bound is weaker than before, it requires more examples for smaller errors
(grows like 1/ε2 vs 1/ε).

6 Overfitting

err(h) ≤ ˆerr(h) +O

√ ln(|H|) + ln(1/δ)
m

 (40)

err(h) ≤ ˆerr(h) +O

√ |h|+ ln(1/δ)
m

 (41)
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As h gets more complex, the training error ˆerr(h) tends to go down while the complexity
|h| increases, so the true error err(h) may at first go down but then increase, as in the
figure. This is called overfitting.

Complexity

E
rr

or

empirical error

true error bound

Solutions: (1) Cross Validation, which means, hold out some of the training data and
use it to determine when to stop training. (2) Treat bound as real and optimize in |h|. This
is called structural risk minimization. (3) Build algorithms that are resistant to overfitting.
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