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1 Bounding Error on Mean

Given a set of examples x; = [0,1] ¢ = {1...m} drawn from a distribution D we would like

to calculate the observed mean p
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and compare that to the real mean of D, call it p. It is useful to define the quantity

g=p+e (2)

We could weakly bound the probability of p being greater than ¢ using Markov’s inequality:

Prix > kEX] <1/k (3)
Prp > s] <p/s (4)
Pr[p > q] <p/q<1. (5)
However, we can do better than that, in fact
THEOREM
Pr[p > g] < exp(—RE(q||[p)m) (6)
where 1
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PROOF
Pr[p > q] = Pr[emm > eAqm] < e MME [eAﬁm] (8)
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now because each z; is an independant measurement

m
e M T Ele?]. (10)
i=1
Now note that
AN <1 —a+ etz Vo elo,1] (11)
which we can use to show that
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Now if we minimize this probability with respect to lambda you get

Amin = In (((11(1_—(12)?;) '

Plugging that back into the probability you get the desired bound
Pr[p > q] < exp(—RE(q||[p)m)

Note that by defining y; = 1 — x; we can prove the symmetric result that
Pr[p > p — €] < exp(~RE(p — €|[p)m)
This theorom can also be used to prove corollaries
Prlp > p+ ap] < e /3
Prlp < p—ap| < e/

This is done by plugging in € = ap and then bounding RE(q||p).

Thinking back to the double-sample proof: m(h) was the number of mistakes on S’.

Thus p = m(h)/m and p = € and so
Pr[m(h) < me/Q] = Pr[ﬁ <p _p/Q] < e—mp/S'

If m > 8/e then
Prim(h) < me/2] <e ' < 1/2.

2 McDiarmid’s Inequality

Let
flzy, ... zm)
be any function such that for all 1, ..., zy;z},
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In other words, changing x; can never change f by more than ¢;. Let X;...X,, be indepen-

dant but not necessarily identically distributed.

THEOREM 2
Pr(f(z1..2m) > E[f(21...7)] + €] < exp (%)

3 Hoeffding

Hoeffding’s inequality ,
Prp>p+e <e 2™

is a special case of McDiarmid. Let

i=1

E[f] =p, ¢, =1/m (for 0 < 2z < 1). So making use of McDiarmid’s Inequality,

. —2¢?
Pr[p > p+e] <exp (Tfnﬂ) = exp(—2€*m)
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4 General Strategy

Let
err(h) = Proy~ply # h(z)] (28)
eir(h) = - |{i i # b)) (29)

Minimize efr(h). Show close to true error, thus effectively minimizing the true error.

5 Finite Example

THEOREM Assume |H| finite. Given m random examples, with probability 1 — ¢

VheH : |err(h) —err(h)| <e (30)
tm>0 <ln|H| +21n(1/(5)> 31)
€
PROOF
Fix an h.
E[X;] = err(h) (33)
1 m
— > X; =err(h) (34)
mais
Pr[p > p+e < e 2m (35)
Prlerr(h) > err(h) + ¢ < e 2™ (36)
Prljerr(h) — err(h)| > € < 2727 (37)
Now using union bound we can bound the probability for all A.
Pr[3heH : err(h) — eir(h)| > €] < 2|H|e 2™ (38)

So by increasing m we can bound the probability. So in order to make the probability less
than 6 we need

_ W(|H)) +In(1/6)

3 (39)

€
Note that this bound is weaker than before, it requires more examples for smaller errors
(grows like 1/€% vs 1/e).

6 Overfitting

err(h) <err(h) + O (\/ln(\H\) ;ln(l/é)) (40)
err(h) <err(h) + O ( 7|h| +$(1/6)) (41)
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As h gets more complex, the training error err(h) tends to go down while the complexity
|h| increases, so the true error err(h) may at first go down but then increase, as in the
figure. This is called overfitting.

true error bound

Error

empirical error

Complexity

Solutions: (1) Cross Validation, which means, hold out some of the training data and
use it to determine when to stop training. (2) Treat bound as real and optimize in |h|. This
is called structural risk minimization. (3) Build algorithms that are resistant to overfitting.



