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1 Where we were last time

With probability > 1 — 6, V h € H, if h is consistent with a sample of size m then
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We also showed that Iy (m) < ®4(m) where d = VCdim(H).
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err(h) < E(lg Iy (2m) +1g

2 Finding the order of magnitude on err(h)

We will show that

for m > d. We have
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since we're adding m — d positive terms, and 1(™~9 doesn’t change anything. But this is
the bionomial function, so
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So returning to the original equation, if h is consistent then

dln™ +1nl
Wﬂm§0<_£ii£g>
m

Or equivalently, err(h) < e for

O (dln(l/e) +ln(1/6)> .
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3 How is d useful?

The VCdim of H, d, gives us a bound on how many examples m we need to achieve € and 6.
But, ‘H is arbitrarily chosen, so it would be meaningless to use it to provide a lower bound
for m. However, a lower bound for m using VCdim(C) can be found.
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4 Error for m <

We will prove that...
V algorithms A 3 concept class ¢ € C and a dsitribution D such that if only m < %l
examples are selected from D then
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That is, for € < % and 6 < %, PAC learning is impossible with fewer than (or equal to)
% examples.

To do this, we will assume c is chosen at random by an adversary.

Proof:
Assume sq - - - 84 are shattered.

If d = VCdim(C), then there exists a set of such examples that are shattered.
Take C’, a subset of C which contains one representative concept ¢ for each dichotomy of
the shattered set such that ¢ produces that dichotomy.

c] = 24
The adversary chooses some random ¢ € C’, where all members of C’ are uniformly dis-
tributed. The distribution D is uniform over the shattered set.

So far, we have outlined ”experiment 1,” which can be summarized as:

e ¢ chosen at random

sample S = {x1,...,xy} chosen at random

e h4 computed by A using S and labels on that set

x, a test point, is randomly chosen, and we then test if hy(z) # c(x)
But, we claim this experiment is equivelant to ”experiment 2,” as follows:

S chosen at random

labels ¢(z;) chosen just for those xz; € S

e h4 computed by A using S and labels on that set

x, a test point, is randomly chosen and labeled (unless already labeled)

test if ha(x) # c(x)

The label for  might have already been chosen if z € S, in which case the hypothesis (which
we assume to be consistent) has zero probability of incorrectly labeling 2. Otherwise, h 4
has a 50/50 chance of selecting the right label.

Furthermore, x has at most a 50% chance of being in S (since m < d/2). So, computing
probability over ¢, S, x:

Pr(ha(z) #c(xz)) = Pr(zeSand ha(z) # c(x)) + Pr(z €S and ha(z) # c(x))

> 04 Pr(z € S)Pr(ha(z) # c(z)|lx €S)
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S0 § <Bu(Prsalha(z) # c(x))
therefore 3¢ € C' : Pr(ha(z) # c(x)) >
0 Es(Prylha(z) £ c(x))) > 1
Es(err(ha)) > %
<Es(err(ha)) < Pr(err(ha) > g) + Pr(err(ha) < §) - &
< Pr(err(hA) > 1)+ 3, because Pr(err(ha) < 35) is at most 1.
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5 Inconsistent Hypotheses

What are the cases in which we would be unable to find a consistent hypothesis?
e The true concept is not in ‘H
e The true concept is computationally hard to find
e There is no functional relationship between examples and labels

What if labels are probabilistically related to examples?
For a distribution D on X which takes values 0 or 1,
Replace ¢(x) by y, no longer a function of z.
Prplz,y] = Pr(z)Pr(y|z)
Before, we assumed Pr(y|z) was either 0 or 1.
And we redefine error as err(h) =Pr, y.p[h(z) # Y]
The best h is one for which h(z) is the more probable of 0 or 1:
hopt(z) = {1 if E(y|z) > 3 ; 0 else}
hopt () is ”Bayes’ optimal decision rule” and err(hep) is ”Bayes’ error”

Let’s find an h that minimizes err(h).

We need an ‘H rich enough so that h,,; can be approximated. This is a possible source
of error.

Idea: Minimize the number of errors on S = {(x;,y;)}, "empirical risk minimization”.

Empirical errors efr(h) = -L|{i : h(z;) # y;}|. We need the empirical error to be close
to the true error for every h € H. This is called uniform convergence. If we can do this,
then minimizing err(h) also means approximately minimizing err(h):

Suppose we can show that Vh € 'H

lerr(h) —err(h)| <e

Then let & be the hypothesis that minimizes e?r(h).

err(h) < efr(h) + e, by rewriting the above

< err(h) + € for any h, including the best one

< err(h) + 2¢ by substituting from the original equation

So the true error of ﬁ, the most consistent hypothesis, is within 2¢ of the error of the
best h in the entire class, provided we can prove uniform convergence.

To prove uniform convergence results, we will need a powerful tool, called Chernoff
bounds.



6 Chernoff Bounds, Part 1

For some set of random variables X;--- X, independently identically distributed, where
X; €10,1], let

p=E(X;)

p=+13X;

which we will prove converges on p quickly.

In the setting above, X; = {1 if h(x;) # i, 0 else}, p = err(h) and p = err(()h).

Hoeffding’s Inequality states that:

Pr(p>p+e < e=2¢'m

Pr(p<p—e) <e2m

/In 2
So [p—p| < 12—773 with prob. >1—6

We will prove a stronger form:

Pr(p > p+e) < e BE@+llP)m where RE is the relative entropy function, described
below

7 Relative Entropy

RE = Relative Entropy also known as Kullback-Liebler (KL) divergence

RE(-||-) measures the distance between two distributions

Let’s say we're sending a message = which is selected from a distribution defined by prob-
ability P(x).

The best way to encode x is to use lg % bits for x.

The entropy of P is the expected code length: Y P(z)lg ﬁ

But let’s say we ”think” the distribution of x is Q.

The cross entropy of P and Q = > P(z)lg %, which would be the average code length,
and is always at least the entropy of P.

The difference between the cross entropy and the entropy is > P(z)1

which we call RE(P||Q)

P(a)
& Q)

If x can take on only the values 0 and 1 with probability p and 1 — p, respectively, from P,
and g and 1 — ¢, respectively, from @),
then we may use the shorthand RE(p||q) = plgf]—7 +(1-p)lg %.

Although we used base 2 logarithm above in the definition of relative entropy, from now,
we will use natural logarithm.



