

Solid Modeling

Adam Finkelstein Princeton University COS 426, Spring 2003

3D Object Representations

- Raw data
 - Point cloud
 - Range image

 - Polygon soup
- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit
- · High-level structures
 - Scene graph
 - Skeleton
 - Application specific

3D Object Representations

- · Raw data
 - Point cloud

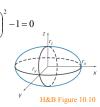
 - Polygon soup
- Surfaces
 - Mesh

 - Parametric Implicit
- Range image
- Solids Voxels
 - BSP tree
 - CSG
 - Sweep
- · High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Implicit Surfaces

• Points satisfying: F(x,y,z) = 0

Polygonal Model


Implicit Model

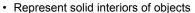
Bill Lorensen SIGGRAPH 99 Course #4 Notes

Implicit Surfaces

- $of(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fxz+2gx+2hy+2jz+k$
- · Common quadric surfaces:
 - Sphere
 - Spriere Ellipsoid $\longrightarrow \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 1 = 0$
 - Torus
 - Paraboloid
 - Hyperboloid

Implicit Surfaces

- Very concise
- Guaranteed validity
- Easy to test if point is on surface
- Easy to intersect two surfaces
- · Disadvantages:
 - Hard to describe complex shapes
 - Hard to enumerate points on surface
 - · Hard to draw


3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup
- Surfaces
 - Mesh

 - Parametric
 - Implicit

- · Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- · High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Solid Modeling

Surface may not be described explicitly

Visible Human

SUNY Stoney Brook

Motivation 1


Example: CAT scan

Stanford University

Motivation 2

- · Some applications require solids
 - Example: CAD/CAM

Intergraph Corporation

Motivation 3

- · Some algorithms require solids
 - Example: ray tracing with refraction

Addy Ngan and Zaijin Guan COS 426, 1998 Princeton University

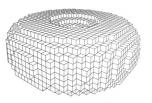
Solid Modeling Representations

- · What makes a good solid representation?
 - Accurate
 - Concise
 - Affine invariant
 - Easy acquisition
 - Guaranteed validity
 - Efficient boolean operations
 - Efficient display

Solid Modeling Representations

- Voxels
- · Quadtrees & Octrees
- · Binary space partitions
- · Constructive solid geometry

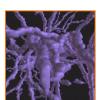
Solid Modeling Representations



- Voxels
- · Quadtrees & Octrees
- · Binary space partitions
- · Constructive solid geometry

Voxels

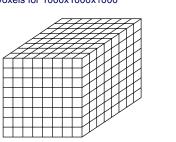
- · Partition space into uniform grid
 - Grid cells are called a *voxels* (like pixels)
- · Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - 。 etc.



FvDFH Figure 12.20

Voxel Acquisition

- MRI
- CAT
- Simulation
 - ∘ FEM

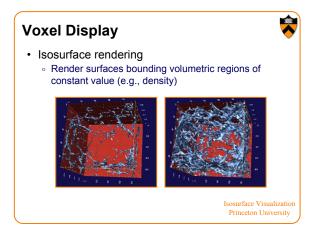


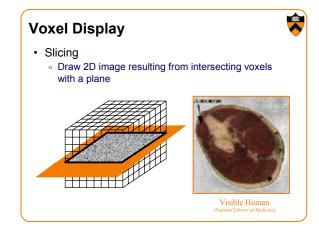
Voxel Storage

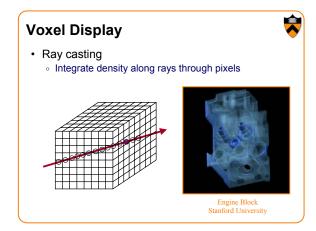
- O(n³) storage for nxnxn grid
 - o 1 billion voxels for 1000x1000x1000

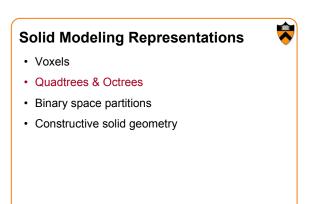
Voxel Boolean Operations

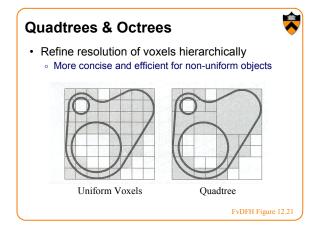
- · Compare objects voxel by voxel
 - Trivial

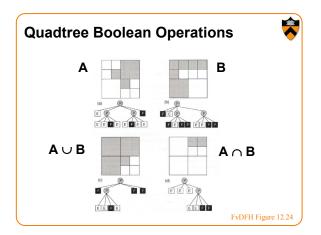


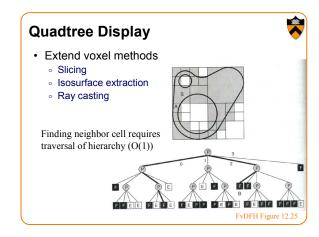


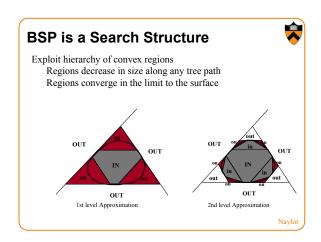


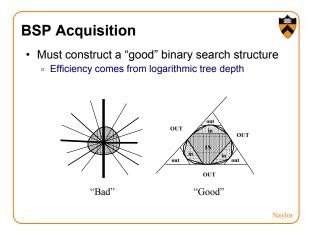









Solid Modeling Representations



- Voxels
- · Quadtrees & Octrees
- · Binary space partitions
- · Constructive solid geometry

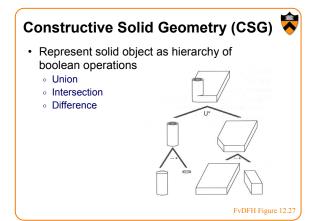


BSP Boolean Operations

- Divide and conguer
 - Each node V corresponds to a convex region containing all geometry in the subtree rooted at V
 - No intersection with bounding volume of V means no intersection with subtree rooted at V
 - Do detail work only in regions required
 - o Boolean operations grow with O(log n) if "good" tree

Naylor

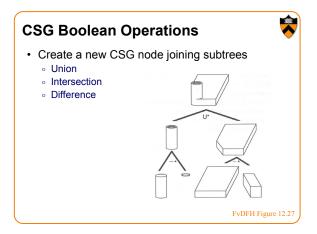
Partitioning Tree olimical Partitioning Tree

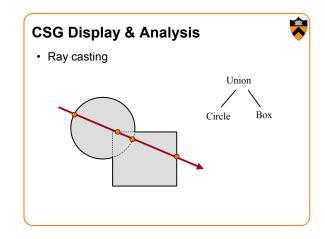

Solid Modeling Representations

Voxels

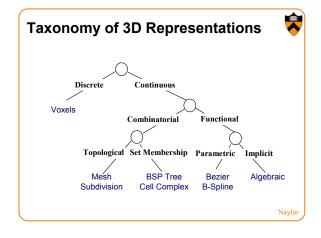
Naylor

- · Quadtrees & Octrees
- · Binary space partitions
- · Constructive solid geometry


CSG Acquisition



- · Interactive modeling programs
 - CAD/CAM



H&B Figure 9.9

Summary				
	Voxels	Octree	BSP	CSG
Accurate	No	No	Some	Some
Concise	No	No	No	Yes
Affine invariant	No	No	Yes	Yes
Easy acquisition	Some	Some	No	Some
Guaranteed validity	Yes	Yes	Yes	No
Efficient boolean operations	Yes	Yes	Yes	Yes
Efficient display	No	No	Yes	No

