Where are we going?

e Last time:

— Started out on Chapter 18

—What is abasic block? a dominator? a dominator tree? aloop? aloop header? a
natural loop?

— What kinds of loop optimizations can we do? Invariant code hoisting.

* Find the invariant statements.
* Check to see whether the invariant statements can be hoisted.

e Today:

— Continue Chapter 18.
— Review some definitions.
— More loop optimizations.

x Induction variable analysis, strength reduction and induction variable elimina-
tion.

University)

Prof. David Walker

L oops

e First step in loop optimization — find the loops.
e A loopisaset of CFG nodes S such that:

1. there exists a header node /i in S that dominates all nodesin S.

— there exists a path* from A to any nodein S.
— h isthe only nodein S with predecessors not in S.

2. from any node in S, there exists a path* to h.

e A loop isasingle entry, multiple exit region.

* Note: here, a path must have non-zero length and contain only nodes from S

Prof. David Walker University

10 —

\l\ &
(o))

11

12

Natural Loops

e Back-edge - flow graph edge from node » to node A such
that 4 dominatesn

e Natural loop of back-edge (n, h):

— has aloop header h.

— set of nodes X such that ~ dominates x € X and there
IS a path from z to n not containing A.

e A node h may be header of more than one natural |oop.

e Natural loops may be nested.

Prof. David Walker

University A

Finding Nested L oops

e Compute dominators.
e Compute dominator tree.
e Find the natural loops and therefore loop headers.

— Traverse the dominator tree (from the most to least dominating)
— For each dominator, find the back edges pointing to it.
— For each back edge, find the rest of nodes in the loop.

e Merge loops that share the same loop header. Call loop[h] the set of nodes in the
loop for header h.

e Compute the loop nest tree.

— Traverse the dominator tree and create a new tree with one node for each loop
header.

—If ' € loop|h| then draw an arc from h to /'.

Once we have the loop nest tree, we start optimizing from the leaves.

University)

Prof. David Walker

L oop Optimization
e Induction variable analysis and elimination - : is an induction variable if only
definitions of ¢ within loop increment/decrement ¢ by loop-invariant value.

e Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI rlil =r0 + 0

LOAD r2 = MFP + a]

ADDI r3 =r0 + 4

LOAD re = MFP + x]
L OOP:

MJUL r4 r3* rl

ADD rs r2 +r4

STCRE Mrb5] =716

ADDI rti =rl1 +1
BRANCH r1 <= 10, LOOCP

Prof. David Walker University Y

| nduction Variables

Variablei inloop L iscalled induction variable of L if eachtimei changesvauein L,
It is incremented/decremented by |oop-invariant value.

Assumea, c loop-invariant.

e | Isaninduction variable
|:Y+a e | isaninduction variable
\V —j :? * cisequivaentto
j=i*c+d) =] rare

—computee = a * c outsideloop:
j =] + e = strengthreduction

—may not need to use i in loop = induction
variable elimination

Prof. David Walker) University ~

| nduction Variable Detection

Scan loop L for two classes of induction variables:

e basic induction variables - variables (i) whose only definitions within L are of the
foomi =1 + cori =1 - c,cisloopinvariant.

e derived induction variables - variables (j) defined only once within L, whose value
IS linear function of some basic induction variable L.

Associatetriple (i, a, b) witheach induction variable|
e | Isbasic induction variable; a and b are loop invariant.
e valueof | at point of definitionisa + b * |

e | belongsto the family of i

University)

Prof. David Walker

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:
e Part 1. Scan statements of L for basic induction variables|

—foreachi , associatetriple(i, 0, 1)
—1 belongsto its own family.

Prof. David Walker Princeton University

Induction Variable Detection: Algorithm

e Part 2. Scan statements of L for derived induction variablesk:
1. there must be single assignment to k within L of theformk = | * cor
k =] + d,] isaninduction variable; c, d loop-invariant, and
2. 1f | isaderived induction variable belonging to the family of i, then:

—the only definition of | that reaches k must be onein L, and

— no definition of I must occur on any path between definition of | and definition
of k

e Assume| associated withtriple(i, a, b):] = a + b * 1 a point of defi-
nition.

e Can determine triple for k based on triple for j and instruction defining k:
-k =] * ¢c— (1, a*c, b*c)
-k =] +d—(i, a + d, b

University)

Prof. David Walker

Induction Variable Detection: Example

s = 0;

for(i =0; I <N 1++)
s += al[i];

Computer Science 320

) - ke = =
Prof. David Walker . Princeton University

1 rt=0
v
2 r2=0
v
Preheader:
v

3: branchr2 >= N

m
10: 4 r3=r2*4
v
5. r4A=r3+a
y
6: S = M[r4]
V
7. ri=rl+r5
V
8: r2=r2+1
V
9. jump

Computer Science 320 T - . =
Prof. David Walker . Princeton University)

Strength Reduction

1. For each derived induction variable| withtriple(i, a, b),createnew|’.
e all derived induction variables with sametriple (1, a, b) may sharej’

2. After each definitionof i InL,1 = 1 + c,insat statement:
=i b

e b * c iIsloop-invariant and may be computed in preheader or during compile
time.

3. Replace unigue assignmenttoj with] = j’.
4. Initialize| ’ at end of preheader node:

]’ b * |

J7 =] t a

e Strength reduction still requires multiplication, but multiplication now performed
outside loop.

e |’ asohastriple(i, a, b)

Prof. David Walker . University Y

Strength Reduction: Example

ri=0

v

r2=0

v

branchr2 >= N

10:

. —

3=r2*4

v

rd=r3+a

v

5 = MJr4]

v

rl=rl1+r5

v

r2=r2+1

v

jump

Prof. David Walker

-13-

Princeton University

Strength Reduction: Example

1 r1=0
v
2 r2=0
. v
Preheader:| 133194 4
r33=r33+0
r44=r2* 4
r44=r44 + a
v
3 branchr2 >=N
v
10: 4. r3=r33
v
) r4=r44
v
6: r5=M[r4]
v
7 ril=rl1+r5
v
8: r2=r2+1
v
8. r33=r33+4
v
8" rd4=r44 + 4
v
o jump

Computer Science 320
Prof. David Walker

-14-

Princeton University

3

I nduction Variable Elimination
After strength reduction has been performed:

e some induction variables are only used in comparisons with loop-invariant values.
e some induction variables are useless

— dead on all loop exits, used only in definition of itself.
— dead code elimination will not remove usal ess induction variables.

Prof. David Walker University

-15-

Induction Variable Elimination: Example

1:‘ r1=0
v
2:\ r2=0 \
v
Preheader: 13320
rd4 =a
v
3:‘ branchr2 >=N ‘
v
10: ‘ 5:‘ r4 =r44 ‘
v
6| 15=M[r4] |
v
7:\ rl=rl+r5 \
v
8:‘ r2=r2+1 ‘
v
8’:‘ r33=r33 + 4 \
v
8":‘ rdd =rd4 + 4 ‘
v
9:‘ jump ‘
Computer Science 320

Prof. David Walker

-16 -

Princeton University

3

| nduction Variable Elimination

e Variable k is almost useless if it is only used in comparisons with loop-invariant
values, and there exists another induction variable t in the same family ask that is
not useless.

e Replace k in comparison with t
— K Isuseless

Prof. David Walker - University ~

Induction Variable Elimination: Example

1 ri=0
v
2: r2=0
Preheader:
rdd = a
v
3 branchr2 >= N
m
10: 5. r4 =rd4
v
6: 5= M[r4]
v
7 ri=rl1+r5
v
8: r2=r2+1
v
8’ rd4 =rd4 + 4
v
o jump

j . - =
Prof. David Walker . Princeton University

Induction Variable Elimination: Example

1 ri=0
v

2: r2=0
v

Preheader:
rd4 = a
r100=4* N
r101 =r100 + a

v

3:| branchr44 >=r101

m
10: 5. r4 =rd4

v

6: 5= M[r4]
v

7 ri=rl1+r5
v

8: r2=r2+1
v

8’ rd4 =rd4 + 4

v

o jump

j . - =
Prof. David Walker . Princeton University

