
Where are we going?
� Last time:

– Started out on Chapter 18

– What is a basic block? a dominator? a dominator tree? a loop? a loop header? a
natural loop?

– What kinds of loop optimizations can we do? Invariant code hoisting.

� Find the invariant statements.

� Check to see whether the invariant statements can be hoisted.

� Today:

– Continue Chapter 18.

– Review some definitions.

– More loop optimizations.

� Induction variable analysis, strength reduction and induction variable elimina-
tion.

Computer Science 320
Prof. David Walker

- 1 -



Loops
� First step in loop optimization � find the loops.

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path* from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path* to �.

� A loop is a single entry, multiple exit region.

* Note: here, a path must have non-zero length and contain only nodes from �

Computer Science 320
Prof. David Walker

- 2 -



Natural Loops

1

2

3 4

5 6

7

11

8

9

10 12

� Back-edge - flow graph edge from node � to node � such
that � dominates �

� Natural loop of back-edge ��� ��:

– has a loop header �.

– set of nodes � such that � dominates � � � and there
is a path from � to � not containing �.

� A node � may be header of more than one natural loop.

� Natural loops may be nested.

Computer Science 320
Prof. David Walker

- 3 -



Finding Nested Loops
� Compute dominators.

� Compute dominator tree.

� Find the natural loops and therefore loop headers.

– Traverse the dominator tree (from the most to least dominating)

– For each dominator, find the back edges pointing to it.

– For each back edge, find the rest of nodes in the loop.

� Merge loops that share the same loop header. Call loop[h] the set of nodes in the
loop for header h.

� Compute the loop nest tree.

– Traverse the dominator tree and create a new tree with one node for each loop
header.

– If �� � ������ � then draw an arc from � to ��.

Once we have the loop nest tree, we start optimizing from the leaves.

Computer Science 320
Prof. David Walker

- 4 -



Loop Optimization
� Induction variable analysis and elimination - � is an induction variable if only

definitions of � within loop increment/decrement � by loop-invariant value.

� Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 5 -



Induction Variables

Variable i in loop � is called induction variable of � if each time i changes value in �,
it is incremented/decremented by loop-invariant value.

i = i + a

j = i * c + d

Assume a, c loop-invariant.

� i is an induction variable

� j is an induction variable

– j = i * c is equivalent to
j = j + a * c

– compute e = a * c outside loop:
j = j + e� strength reduction

– may not need to use i in loop � induction
variable elimination

Computer Science 320
Prof. David Walker

- 6 -



Induction Variable Detection

Scan loop � for two classes of induction variables:

� basic induction variables - variables (i) whose only definitions within � are of the
form i = i + c or i = i - c, c is loop invariant.

� derived induction variables - variables (j) defined only once within �, whose value
is linear function of some basic induction variable �.

Associate triple (i, a, b) with each induction variable j

� i is basic induction variable; a and b are loop invariant.

� value of j at point of definition is a + b * i

� j belongs to the family of i

Computer Science 320
Prof. David Walker

- 7 -



Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

� Part 1: Scan statements of � for basic induction variables i

– for each i, associate triple (i, 0, 1)

– i belongs to its own family.

Computer Science 320
Prof. David Walker

- 8 -



Induction Variable Detection: Algorithm
� Part 2: Scan statements of � for derived induction variables k:

1. there must be single assignment to k within � of the form k = j * c or
k = j + d, j is an induction variable; c,d loop-invariant, and

2. if j is a derived induction variable belonging to the family of i, then:

– the only definition of j that reaches k must be one in �, and
– no definition of imust occur on any path between definition of j and definition

of k

� Assume j associated with triple (i, a, b): j = a + b * i at point of defi-
nition.

� Can determine triple for k based on triple for j and instruction defining k:

– k = j * c� (i, a*c, b*c)

– k = j + d� (i, a + d, b)

Computer Science 320
Prof. David Walker

- 9 -



Induction Variable Detection: Example

s = 0;
for(i = 0; i < N; i++)

s += a[i];

Computer Science 320
Prof. David Walker

- 10 -



1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1

Computer Science 320
Prof. David Walker

- 11 -



Strength Reduction

1. For each derived induction variable j with triple (i, a, b), create new j’.

� all derived induction variables with same triple (i, a, b) may share j’

2. After each definition of i in �, i = i + c, insert statement:
j’ = j’ + b * c

� b * c is loop-invariant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j with j = j’.

4. Initialize j’ at end of preheader node:

j’ = b * i
j’ = j’ + a

� Strength reduction still requires multiplication, but multiplication now performed
outside loop.

� j’ also has triple (i, a, b)

Computer Science 320
Prof. David Walker

- 12 -



Strength Reduction: Example

1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1

Computer Science 320
Prof. David Walker

- 13 -



Strength Reduction: Example
1:

2:

r1 = 0

r2 = 0

Preheader: r33 = r2 * 4

r33 = r33 + 0

r44 = r2 * 4

r44 = r44 + a

3:

4:

5:

6:

branch r2 >= N

r5 = M[r4]

10: r3 = r33

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4

Computer Science 320
Prof. David Walker

- 14 -



Induction Variable Elimination

After strength reduction has been performed:

� some induction variables are only used in comparisons with loop-invariant values.

� some induction variables are useless

– dead on all loop exits, used only in definition of itself.

– dead code elimination will not remove useless induction variables.

Computer Science 320
Prof. David Walker

- 15 -



Induction Variable Elimination: Example
1:

2:

r1 = 0

r2 = 0

5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4

Preheader:

3: branch r2 >= N

10:

r44 = a

r33 = 0

Computer Science 320
Prof. David Walker

- 16 -



Induction Variable Elimination
� Variable k is almost useless if it is only used in comparisons with loop-invariant

values, and there exists another induction variable t in the same family as k that is
not useless.

� Replace k in comparison with t

� k is useless

Computer Science 320
Prof. David Walker

- 17 -



Induction Variable Elimination: Example

Preheader:

3: branch r2 >= N

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a

Computer Science 320
Prof. David Walker

- 18 -



Induction Variable Elimination: Example

Preheader:

3:

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a

r100 = 4 * N

r101 = r100 + a

branch r44 >= r101

Computer Science 320
Prof. David Walker

- 19 -


