Where are we going?

- Last time:
 - Started out on Chapter 18
 - What is a basic block? a dominator? a dominator tree? a loop? a loop header? a natural loop?
 - What kinds of loop optimizations can we do? Invariant code hoisting.
 - * Find the invariant statements.
 - * Check to see whether the invariant statements can be hoisted.
- Today:
 - Continue Chapter 18.
 - Review some definitions.
 - More loop optimizations.
 - * Induction variable analysis, strength reduction and induction variable elimination.

Loops

- First step in loop optimization \rightarrow find the loops.
- A *loop* is a set of CFG nodes S such that:
 - 1. there exists a *header* node h in S that dominates all nodes in S.
 - there exists a path* from h to any node in S.
 - -h is the only node in S with predecessors not in S.
 - 2. from any node in S, there exists a path* to h.
- A loop is a single entry, multiple exit region.
- * Note: here, a path must have non-zero length and contain only nodes from ${\cal S}$

Natural Loops

- *Back-edge* flow graph edge from node *n* to node *h* such that *h* dominates *n*
- Natural loop of back-edge $\langle n, h \rangle$:
 - has a loop header h.
 - set of nodes X such that h dominates $x \in X$ and there is a path from x to n not containing h.
- A node h may be header of more than one natural loop.
- Natural loops may be nested.

Finding Nested Loops

- Compute dominators.
- Compute dominator tree.
- Find the natural loops and therefore loop headers.
 - Traverse the dominator tree (from the most to least dominating)
 - For each dominator, find the back edges pointing to it.
 - For each back edge, find the rest of nodes in the loop.
- Merge loops that share the same loop header. Call *loop[h]* the set of nodes in the loop for header h.
- Compute the loop nest tree.
 - Traverse the dominator tree and create a new tree with one node for each loop header.
 - If $h' \in loop[h]$ then draw an arc from h to h'.

Once we have the loop nest tree, we start optimizing from the leaves.

Loop Optimization

- Induction variable analysis and elimination *i* is an induction variable if only definitions of *i* within loop increment/decrement *i* by loop-invariant value.
- **Strength reduction** replace expensive instructions (like multiply) with cheaper ones (like add).

ADDI	r1	=	r0	+	0	
LOAD	r2	=	M[E	۳P	+	a]
ADDI	r3	=	r0	+	4	
LOAD	rб	Ξ	M[E	Ρ	+	x]
LOOP:						
MUL	r4	=	r3	*	rl	L
ADD	r5	=	r2	+	r4	1
STORE	נ] M	<u>5</u>] =	re	5	
ADDI	r1		r1	+	1	
BRANCH	r1	<=	= 10),	L(DOP

Induction Variables

Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

- i is an induction variable
 - j is an induction variable

$$j = j + e \Rightarrow$$
 strength reduction

- may not need to use i in loop \Rightarrow induction variable elimination

Induction Variable Detection

Scan loop L for two classes of induction variables:

- basic induction variables variables (i) whose only definitions within L are of the form i = i + c or i = i c, c is loop invariant.
- *derived* induction variables variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j

- i is basic induction variable; a and b are loop invariant.
- value of j at point of definition is a + b * i
- j belongs to the family of i

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Part 1: Scan statements of L for basic induction variables i
 - for each i, associate triple (i, 0, 1)
 - i belongs to its own family.

Induction Variable Detection: Algorithm

- Part 2: Scan statements of *L* for derived induction variables k:
 - 1. there must be single assignment to k within L of the form k = j * c or k = j + d, j is an induction variable; c, d loop-invariant, and
 - 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of j and definition of k
- Assume j associated with triple (i, a, b): j = a + b * i at point of definition.
- Can determine triple for k based on triple for j and instruction defining k:

 $-k = j * c \rightarrow (i, a*c, b*c)$ $-k = j + d \rightarrow (i, a + d, b)$

Computer Science 320 Prof. David Walker

Induction Variable Detection: Example

```
s = 0;
for(i = 0; i < N; i++)
s += a[i];
```


Strength Reduction

- 1. For each derived induction variable j with triple (i, a, b), create new j'.
 - all derived induction variables with same triple (i, a, b) may share j'
- 2. After each definition of i in L, i = i + c, insert statement:

j′ = j′ + b * c

- b * c is loop-invariant and may be computed in preheader or during compile time.
- 3. Replace unique assignment to j with j = j'.
- 4. Initialize j' at end of preheader node:

```
j' = b * i
j' = j' + a
```

- Strength reduction still requires multiplication, but multiplication now performed outside loop.
- j' also has triple (i, a, b)

Strength Reduction: Example

Strength Reduction: Example

Computer Science 320 Prof. David Walker

3

Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are *useless*
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.

Induction Variable Elimination: Example

Induction Variable Elimination

- Variable k is *almost useless* if it is only used in comparisons with loop-invariant values, and there exists another induction variable t in the same family as k that is not useless.
- Replace k in comparison with t
 → k is useless

Induction Variable Elimination: Example

Induction Variable Elimination: Example

