Symbol-Table ADT

Records with keys (priorities)
basic operations

* insert

* search

HGShing Algorithms ¢ create . generic operations

o test if empty " common to many ADTs

Hash functions - not needed for one-time use
.. . but critical in large systems

Separate Chaining
Linear Probing

>
Double Hashing Problem solved (?)

¢ balanced, randomized trees use

. ST.h
O(lg N) comparisons void STinit():

Is Ig N required? void STinsert(Item;
| tem STsear ch(Key) ;

* no (and yes) int STenpty();

Are comparisons necessary? ST interface in C

* no
2
ST implementations cost summary Hashing: basic plan

“Guaranteed" asymptotic costs for an ST with N items Save items in a key-indexed table (index is a function of the key)

insert search Hash function
unordered array 1 N * method for computing table index from key
Collision resolution strategy
BST N N
* algorithm and data structure to handle
randomized BST ~ IgN IgN two keys that hash to the same index

red-black BST IgN Ig N
Classic time-space tradeoff

* no space limitation:
trivial hash function with key as address

* assumes system can produce “random” numbers T
* no time limitation:

trivial collision resolution: sequential search

* limitations on both time and space (the real world)

Can we do better? hashing

Hash function

Goal: random map (each table position equally likely for each key)
Treat key as integer, use prime table size M
* hash function: h(K) = K nod M

4 - .
Ex: 4-char keys, table size 101 26 '~ .5 million different 4-char keys

101 values
bi nary [01100001j0110001001100011)01100100] ~50,000 keys per value
hex 6 1 6 2] 6 3 6 4
ascii al b) C| d

Huge number of keys, small table: most collide! 25 items, 11 table positions
~2 items per table position

abcd hashes to 11

Hash function (long keys)

0x61626364 = 1633831724
16338831724 % 101 = 11

dcba hashes to 57
0x64636261 = 1684234849
1633883172 % 101 = 57

5 items, 11 table positions
~ .5 items per table position

abbc also hashes to 57
0x61626263 = 1633837667 E&
1633837667 % 101 = 57

5

Collision Resolution

Two approaches

Separate chaining
* M much smaller than N
* ~N/M keys per table position
* put keys that collide in a list

* need to search lists

Open addressing (linear probing, double hashing)
* M much larger than N
* plenty of empty table slots
* when a new key collides, find an empty slot

* complex collision patterns

Goal: random map (each table position equally likely for each key)
Treat key as long integer, use prime table size M
¢ use same hash function: h(K) = K nod M

* compute value with Horner's method

0x61
Ex: abcd hashes to 11 3

0x61626364 = 256* (256* (256* 97+98) +99) +100
16338831724 % 101 = 11

scramble by using
numbers too big? hash. ¢ 117 instead of 256

int hash(char *\)‘int M

OK tfo take mod after each op Cint h oa= 117

256*97+98 = 24930 % 101 = 84 for (h =0; *v !="\0"; v++)
256*84+99 = 21603 % 101 = 90 h = (a*h + *v) %M
256*90+100 = 23140 % 101 = 11 e IR 17

... can continue indefinitely, for any length key }

hash function for strings in C
How much work to hash a string of length N?

Uniform hashing: use a different
random multiplier for each digit.

N add, multiply, and mod ops

Separate chaining

Hash

Array

M too large: too many empty array entries

Hash to an array of linked lists

0o [F—
1 BT —{ATF—{AT I~ AT
2 [F—{mF—{XT4
* map key to value between O and M-1 B ERNENGE
4 [3—
5 [F{E[F—~{P[F{E[F{EIA
. 4 . . 6 [F—
constant-time access to list with key e
Linked lists 8 [F—{H[3—~{s[4
9 [F—{1l4
* constant-time insert o [G—

* search through list using

X Trivial: average list length is N/M
elementary algorithm

Worst: all keys hash to same list
Theorem (from classical probability theory):

Probability that any list length is > tN/M
is exponentially small in t

M too small: lists too long 1

Typical choice M ~ N/10: constant-time search/insert g Guorantee depends onhash

function being random map

8

Linear probing Double hashing

Hash to a large array of items, use sequential search within clusters Avoid clustering by using second hash to compute skip for search

s A
Hash 5 A Hash
s A _E ; _
« map key to value between O and M-1 . N * map key to array index between 0 and M-1
s[H ACER . , . .
Large array Second hash ; 6 X s CERTIN.
: : :: 225§I * map key to nonzero skip value six s[r] St REEN
* at least twice as many slots as items a p key - SKip
6 S H A C E IR (best if relatively prime to M)
Cluster 6| X S H A CERTIN
. ti s block of items g X M S H IEI A (C: E :: L s ¢ QLIICk hack OK Trivial: average list length is N/M =«
contiguous block oT I'tem Ll A I Ex:1 + (k nod 97) Worst: all keys hash to same list and same skip
. ivial: average list length is N/M =
» search through cluster usin Trivia 9 9 , . Theorem (deep):
9 . 9 Worst: all keys hash to same list Avoids clustering (decp)
elementary algorithm for arrays) " , . 1
Theorem (beyond classical probability theory): . Skip values give different search insert: ————
1 1 h
. insert: 5 (1+ Tar) paths for keys that collide search: L In(1va)
M too large: too many empty array entries
M too small: clusters coal search: 5 (1+ G 1
oo small: clusters coalesce ’ TypiCGl choice M ~ 2N: constant-time search/insert ¢m Guarantees depend on hash
functions being random map

Typical choice M ~ 2N: constant-time search/insert €= Guarantees depend on hash

function being random map

Disadvantage: delete cumbersome to implement

9 10
Double hashing ST implementation Hashing tradeoffs
static Item *st; €= code assumes Items are pointers, initialized to NULL

Separate chaining vs. linear probing/double hashing

* space for links vs. empty table slots

"void STinsert (I'tem x) insert
{ Key v = | TEMkey(X); * small table + linked allocation vs. big coherant array
int i = haSh(V’ M ; linear probing:
i i = o ke skip =
! n.t skip : hashtwo(v, M . . esee Linear probing vs. double hashing load factor ()
while (st[i] != NULL) i = (i+skip) %M probeloop
. 50% 66% 75% 90%
st[i] = x; N++;
linear search 15 2.0 3.0 55
. } probing insert 25 5.0 85 55.5
Item STsear ch(Key v) search double Search 14 6 18 26
{ hashing insert 15 20 3.0 5.5
int i = hash(v, M;
_ int skip = hashtwo(v, M;
while (st[i] !'= NULL) probe loop Hashing vs. red-black BSTs
if eq(v, | TEMkey(st[i])) return st[i]; * arithmetic to compute hash vs. comparison
else i = (i+skip) %M

* hashing performance guarantee is weaker (but with simpler code)

return NULL; . .)
* easier to support other ST ADT operations with BSTs

I 12

ST implementations cost summary

"Guaranteed"” asymptotic costs for an ST with N items

insert search delete find kth ort join
largest
unordered array 1 N 1 N NigN N
BST N N N N N N
randomized BST ~ Ig N lg N lg N IgN N IgN

red-black BST Ig N Ig N IgN IgN Ig N Ilg N

hashing* @ @ @ N NigN N
“. ¢+ 7

Not really: need IgN bits to distinguish N keys

* assumes system can produce “random" numbers

* assumes our hash functions can produce random values for all keys

Can we do better?
tough to be sure....

