
range search
intersections of geometric objects

near-neighbor search
point location

Geometric Search
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Types of data

• points, lines, planes; polygons, circles, ...

SETS of N objects

Problems extend to higher dimensions 

• good algorithms also extend to higher dimensions

Higher level intrinsic structures arise (ex: convex hull)

Basic problems

• range search

• intersections

• near neighbor search

Geometric search: overview
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void STinit();
void STinsert(Item);
Item STsearch();
 int STempty();
 int STrange(Key, Key)

Useful extension to symbol-table ADT
  for records with numeric keys
• create
• insert
• search
• test if empty
• range search: how many records have key values

                      that fall within a given range?
Change semantics of search
• require initial call to range search 

(count items in successful search)
• return items in successive search calls

Typical client code:

Application: database queries

Range search (1D)

ST.h

ST interface in C

cnt = STrange(L, R);
for (i = 0; i < cnt; i++)
  {
    x = STsearch();
    /* process x */
  }

insert B B
insert D B D
insert A A B D
insert I A B D I
insert E A B D E I
insert A A A B D E I
insert H A A B D E H I
insert F A A B D E F H I

range E to H 3
search E
search F
search H

no arg

new function
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Ordered array

• slow insert

• binary search on both interval endpoints for range

• increment and test index for search

Hash table

• no reasonable algorithm (key order lost in hash)

BST

• search on both endpoints for range
(need threads for fast search)

Range search (1D) implementations

insert range search

ordered array N lg N 1

hash table 1 N N

BST lg N lg N 1
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Recursively search all subtrees that could have keys in range
• if key at root is within range
• increment global counter
• search both subtrees

• if key at root is left of range, no need to search left subtree
• if key at root is right of range, no need to search right subtree

Slightly simpler logic: 
• not left implies within or right,  so search left
• not right implies within or left,  so search right

1D range search BST implementation

  int count;
  int BSTrangeR(link h, Key L, Key R)
    { int txL = (h->key >= L); 
      int txR = (h->key <= R);
      if (txL && (h->l != z)) BSTrangeR(h->l);
      if (txL && txR) count++;
      if (txR && (h->r != z)) BSTrangeR(h->r);
    }
  int BSTrange(Key L, Key R)
    { count = 0; BSTrangeR(head, L, R); }

not left of range
not right of range

outside interval; check one link
within interval; check both links
not touched
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void STinit();
void STinsert(Item);
Item STsearch();
 int STempty();
 int STrange(Key, Key)

Useful extension to symbol-table ADT
  for records with 2-dimensional keys
• create
• insert
• search
• test if empty
• range search: how many records have key values

                      that fall within a given range?

Geometric interpretation

Range search (2D)

ST.h

ST interface in C

same as for 1D

1D range search
● keys are points on the line
● how many points in a given interval?

2D range search
● keys are points in the plane
● how many points in a given rectangle?
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  int count;
  int GRIDrange(Point LB, Point RT)
    { int i, j;
      for (i = LB.x/G; i <= RT.x/G; i++)
        for (j = LB.y/G; j <= RT.y/G; j++)
          for (t = grid[i][j]; t != NULL; t = t->next)
            if ( t->p.x >= LB.x && 
                 t->p.x <= RT.x &&
                 t->p.y >= LB.y &&
                 t->p.y <= RT.y ) count++;
    }

init
• divide space into G-by-G squares
• create linked list for each square

insert
• use coordinates to index proper list
• add point to list

range
• use range coordinates to index squares

that could have keys in range
• examine all records in all such squares
• if key is in the range, increment counter

2D range search grid implementation

LB

RT

typedef struct Node* link;
struct Node { Point p; link next; };
link grid[maxX/G][maxY/G]; 
int GRIDinit()
  { int i, j;
    for (i = 0; i < maxX/G; i++)
      for (j = 0; j < maxY/G; j++)
        grid[i][j] = NULL;
  }
int GRIDinsert(Point p)
  { 
    link t = malloc(sizeof *t);
    t->p = p;
    t->next = grid[p.x/G][p.y/G];
    grid[p.x/G][p.y/G] = t;
  }
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Classic example (see Sedgewick Chapter 3) 

• array: constant-time access to list by indexing

• list: O(N) space for sets of varying size (total size N)

Choose grid square size to tune performance

• too small: space, initialization cost too high

• too large: too many points per grid square

• rule of thumb: √N by √N grid (~N squares)

Time costs:

• initialize: O(N) to initialize lists

• insert: O(1) provided points evenly distributed

• range: O(1) per point in range (same provision)

•
Simple, fast solution for well-distributed points
  BUT can be slow (points might all be in same square)

Need more flexible data structure

2D range search grid implementation costs
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Recursive search structure for 2D keys (points in the plane)

Standard BST, but alternate using x and y coordinates as key

Corresponds to planar subdivision useful for many geometric algorithms

2D trees

x

points
above x

x

points
below x

search gives rectangle containing point
insert further subdivides plane

even levels

odd levels

points
right of x

points
left of x
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  int count;
  int TDTrangeR(link h, Point LB, Point RT, int sw)
    { int txL = (h->p.x >= LB.x); 
      int txR = (h->p.x <= RT.x);
      int tyB = (h->p.y >= LB.y);
      int tyT = (h->p.y <= RT.y);
      t1 = sw ? txL : tyB; t2 = sw ? txR : tyT;
      if (t1 && (h->l != NULL))
        TDTrangeR(h->l LB, RT, !sw);
      if (txL && txR && tyB && tyT) count++;
      if (t2 && (h->r != NULL))
        TDTrangeR(h->r LB, RT, !sw);
    }
  int BSTrange(Key LB, Key RT)
    { count = 0; BSTrangeR(head, LB, RT, 0); }

Recursively search all subtrees that could have keys in range
• if key at root is in the range, increment counter
• at even level
• if root’s key is left of or within range, search right subtree
• if root’s key is right of or within range, search left subtree

• at odd level
• if root’s key is above or within range, search lower subtree
• if root’s key is below or within range, search higher subtree

2D range search 2D tree implementation

not left
not right
not below
not above
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Grid

• clustering worst case

kD tree

• BST search for range
(need threads for fast search)

Range search (2D) implementations

insert range search

random points

unordered array 1 N N
kD tree lg N R + lg N 1

grid 1 R 1
worst case points

kD tree N N N
grid 1 N N

random order

grid 1 N N
2D tree lg N R + lg N 1
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Geometric data is seldom uniformly random

Example: USA map data

• 80000 points, 20000 grid squares

• half the grid squares are empty

• half the points have >10 others
in same grid square

• 10 percent have >99 others
in same grid square

Clustering is a well-known phenomenon even in random data

Problems worsen in higher dimensions

Good clustering performance is a primary reason to choose
   kD trees over grid methods

Clustering
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Recursive search structure for kD keys (points in k-dimensional space)

Standard BST, but cycle through dimensions for key coordinates

Corresponds to spatial subdivision useful for many geometric algorithms

Efficient, simple data structure for processing kD data

kD trees

x

search gives kD parallelopiped containing point
insert further subdivides space

level ≡ i (mod k)

points whose i-th
coordinate is less than x’s

points whose i-th
coordinate is greater than x’s

Note: 2D and kD trees were discovered by an undergraduate in an algorithms class!
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Problem: Find all intersecting pairs among a set of N geometric objects

Applications:

• CAD (stay tuned)

• games, movies, virtual reality

Simplest version:

• 2D

• all objects are horizontal or vertical line segments

Geometric intersection

Solution approach extends to 3D and general objects
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Use horizontal sweep line moving from top to bottom

• vertical line segment in data is a point on the sweep line

• horizontal line segment in data is an interval on the sweep line

• h-v intersection when points within interval

Reduces 2D h-v line intersection to 1D range searching (!)

Fast algorithm for h-v line intersection
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Use priority queue ADT on y to simulate sweep line movement

Use  range search  ADT on x to simulate sweep line contents

Three types of events

• top of vertical: insert x coordinate onto the sweep line

• bottom of vertical: remove x coordinate from the sweep line

• horizontal: range search on endpoints

Sweep-line h-v intersection implementation

insert
insert

range
range

insert
insert
range

remove
remove
range
range
range

remove

insert
range

remove
remove
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Use priority queue ADT on y to simulate sweep line movement

Use range search  ADT on x to simulate sweep line contents

Sweep-line h-v intersection implementation

PQinit(); STinit();
for (i = 0; i < N; i++) 

PQinsert(lines[i]);
while (!PQempty())
  {
    t = PQdelmax();
    if (horizontal(t)) 
      { 
        cnt = STrange(t.p0.x, t.p1.x);
        for (i = 0; i < cnt; i++) 
          intersection(t, STsearch());
      }
    else if (top(t)) STinsert(t);
    else if (bottom(t)) STdelete(t);
  }

Same basic idea extends to handle arbitrary geometric shapes (!!)

Running time:
O(N) insert and delmax ops for PQ
O(N) insert, delete, and range ops for ST

Total: O(N log N)
   (with suitable ADT implementations)
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Problem: Find intersections in N h-v rectangles
Solution: Slight modification to sweep-line h-v line intersection algorithm
Application: microprocessor design

early 1970s: microprocessor design became 
                     a geometric problem

• Very Large Scale Integration

• Computer-Aided Design

• design-rule checking

Moore’s Law: processing power doubles every 18 months

• 197x: need to check N rectangles

• 197(x+1.5): need to check 2N rectangles on a 2x-faster computer

Quadratic algorithm: (compare each rectangle against all others)

• 197x: takes M days

• 197(x+1.5): takes (4M)/2 = 2M days (!!)

Need O(N log N) CAD algorithms to sustain Moore’s Law

Digression: algorithms and Moore’s Law
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Another useful extension to symbol-table ADT
  for records with metric keys
• create
• insert
• test if empty
• near neighbor search: which record has a key

that is nearest to a given key?

Need concept of distance (not just less)

kD trees provide fast, elegant solution
• recursively search subtrees that could have

near neighbor (may search both)
• O(log N) ?

Near neighbor search
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Ultimate near-neighbor search structure

Voronoi region: set of all points closest to a  given point

Voronoi diagram: planar subdivision delineating Voronoi regions
  (note: Voronoi edges are perpendicular bisector segments)

Delauney triangulation: dual of Voronoi diagram (includes convex hull!)
  edge p-q in Delauney iff p-q bisector segment in Voronoi

Voronoi diagram

p

points closest to p

Delauney triangulation

Challenge: compute the Voronoi
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Basis for incremental algorithms

Region containing point gives points to check to compute
  new Voronoi region boundaries

Adding a point to Voronoi diagram

Main challenge in computing Voronoi: representing it

Use multilist associating each point with its Voronoi neighbors
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Add points (in random order)

• find region containing point

• update neighbor regions, create region for new point

Randomized incremental Voronoi algorithm

Running time: O(N log N)

use near-neighbor algorithm or (with work) Voronoi itself
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Presort points on x-coordinate

Eliminates point location (as for convex hull)

Sweep-line Voronoi algorithm
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Use grid approach to answer near-neighbor queries in constant time

Approach 1: provide approximate answer (to within grid square size)
Approach 2: keep list of points to check in grid squares

Computation not difficult (move outward from points)

Discretized Voronoi diagram
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Basis of many geometric algorithms: search in a planar subdivision

Summary

grid 2D tree
Voronoi
diagram

intersecting
lines

basis √N h-v lines N points N points √N lines

representation
2D array
of N lists

N-node BST
N-node
multilist

~N-node BST

cells ~N squares N rectangles N polygons ~N triangles

search cost 1 log N log N log N

extend to kD? too many cells easy
cells too

complicated
use (k-1)D
hyperplane


