Geometric Algorithms

overview primitives convex hull algorithms context

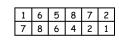
Warning: intuition may not be helpful

Humans have spatial intuition in 2D and 3D: computers do not!

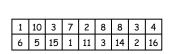
Example: Is a given polygon convex?

we see these

programs see these



1	15	14	13	12	11	10	9	8	7	6	5	4	3	2
1	2	18	4	18	4	19	4	19	4	20	3	20	3	20



Important and far-reaching applications

- models of physical world examples: maps, architecture, medical imaging
- computer graphics examples: movies, games, virtual reality
- mathematical models stay tuned

Ancient mathematical foundations, but most geometric algorithms are less than 30 years old

Knowledge of fundamental algorithms is critical

- use them directly
- use the same design strategies for harder problems
- learn how to compare and evaluate algorithms

2

Elementary geometric primitives (2D)

Point

• two numbers (x, y)
#typedef struct {double x; double y;} Point;

Line

• two numbers a and b [ax + by = 1] 🗧 lines through origin are exceptional

Line segment

- four numbers (x1, y1) and (x2, y2)
- two points p0 and p1
 #typedef struct {Point x; Point y;} LineSegment;

Polygon

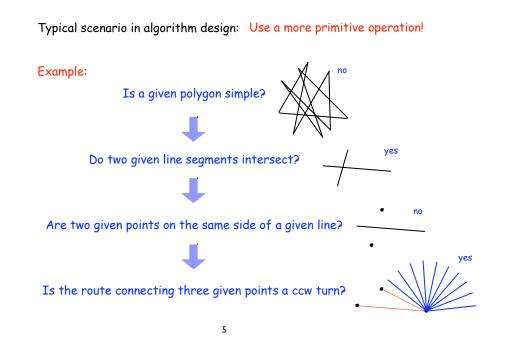
 sequence of points Point p[N];

No shortage of other geometric shapes

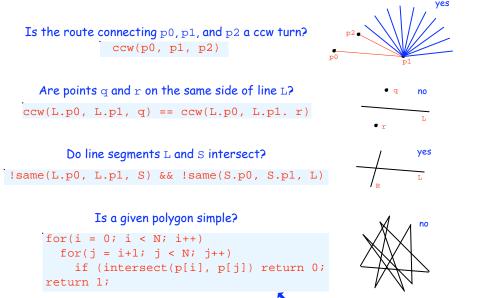
triangle, square, circle, quadrilateral, parallelogram, ...

3D and higher dimensions more complicated

CCW implementation

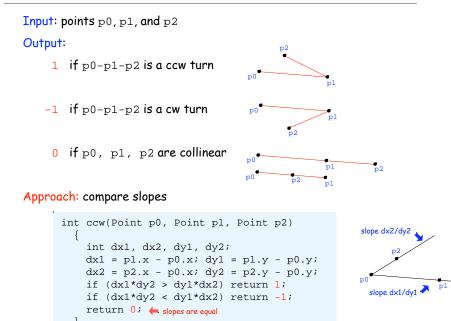


Layers of abstraction example (continued)



7

 Stay tuned (next lecture) for faster implementation



Line-segment intersection implementation bug

6

Still not quite right!

Bug in degenerate case with four collinear points Does AB intersect CD?

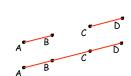
- on the line in the order ABCD: NO
- on the line in the order ACDB: YES

Need more careful CCW implementaton

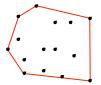
• more work when dx1*dy2 = dx2*dy1 (see book)

Lessons:

- · geometric primitives are tricky to implement
- can't ignore degenerate cases



Convex hull: smallest polygon enclosing a given set of points



A polygon is convex iff every line whose endpoints are within the polygon falls entirely within the polygon

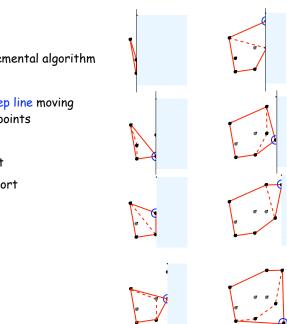
Lemma: Hull must be convex

Running time of convex hull algorithms can depend on

- N: number of points
- M: number of points on the hull
- point distribution

9

Sweep-line convex hull algorithm



Idea: consider points one by one

- next point inside current hull-ignore
- next point outside current hull—update

Two subproblems to solve

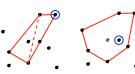
- test if point inside or outside polygon
- update hull for outside points

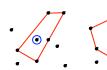
Both subproblems

- brute force: O(M) to check all hull points
- can be improved to O(log M) with binary search
- relatively cumbersome to code

Randomize: take points in random order

Total running time: O(N log M)







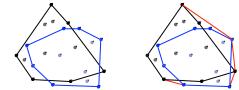
10

Divide-and-conquer convex hull algorithms

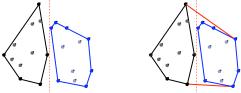
Divide point set into two halves

- solve subproblems recursively
- merge results

Idea 1: take points in random order



Idea 2: divide space in half (presort on one coordinate)



Both O(N log N) but relatively cumbersome to code

Idea: presort on x for incremental algorithm

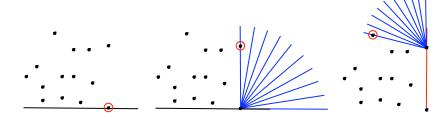
Equivalent to imagining sweep line moving from left to right through points

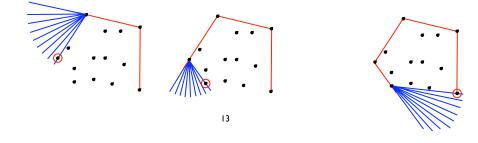
plus: eliminates "inside" test minus: have to pay cost of sort

Total cost: O(N log N)

Idea:

- point with lowest y coordinate is on the hull
- sweep line ccw anchored at current point—first point hit is on hull

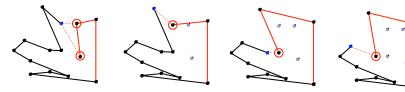


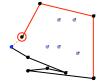


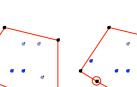
Graham scan convex hull algorithm

Idea:

- sort points by angle to get simple closed polygon
- scan polygon—discard points causing cw turn







Input: polygon (represented as an array of N points)

Output: M (array rearranged such that first M points are convex hull)



2D analog of selection sort: O(NM) running time

14

Implementation of Graham scan algorithm

Input: polygon (represented as an array of N points) \leftarrow points in p[1]...p[N] Output: M (array rearranged such that first M points are convex hull)

```
int grahamscan(Point p[], int N)
           { int i, min, M; Point t;
             for (min = 1, i = 2; i <= N; i++)
               if (p[i].y < p[min].y) min = i;
             for (i = 1; i <= N; i++)
                                                         🗲 swap "lower left" point with first
               if (p[i].y == p[min].y)
                  if (p[i].x > p[min].x) min = i;
             t = p[1]; p[1] = p[min]; p[min] = t;
             quicksort(p, 1, N); ( implementation of less uses angle with p[1]
p[0] is sentinel \rightarrow p[0] = p[N];
             for (M = 3, i = 4; i \le N; i++)
                  while (ccw(p[M], p[M-1], p[i]) \ge 0) M--;
                                                                  🔶 back up to include i on hull
                  M++; t = p[M]; p[M] = p[i]; p[i] = t;
                                                                   👉 add i to putative hull
             return M;
```

Total cost: O(N log N) (for sort).

Idea: fast test to eliminate most inside points

quick: use quadrilateral Q

min (x+y), max(x+y), min(x-y), max(x-y) quicker: use inscribed rectangle R

Three-phase algorithm

- pass through all points to compute R
- eliminate points inside R
- find convex hull of remaining points

Option 1: use recursion ("quickhull")

- relatively cumbersome to implement
- O(N) worst case

Option 2: use Graham scan

- few points remaining in many situations
- O(N + M lg M) avg case (+ fast inner loop)

17

Higher dimensions

Multifaceted (convex) polytope encloses points

NOT a simple object

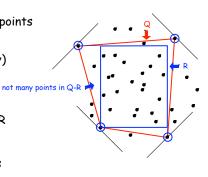
- vertices, edges, facets
- return extreme points (hull vertices)—no natural order

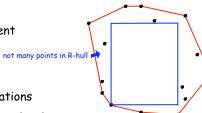
Example: N points d dimensions

- d=2: convex hull
- d=3: Euler's formula (v e + f = 2)
- d>3: exponential number of facets at worst

Some of the same approaches work (costs higher)

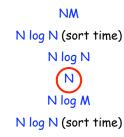
- Package-wrap
- Divide-and-conquer
- Randomized
- Interior elimination





"Guaranteed" asymptotic cost to find M-point hull in N-point set

Package wrap Graham scan Divide and conquer * Quick elimination * Incremental elimination Sweep line



* assumes "reasonable" known point distribution
* leading coefficient higher than for sorting

How many points on hull?

- Worst case: N
- Average case: difficult problems in stochastic geometry
 - uniform in a convex polygon with O(1) edges: log N
 - uniform in a disc: N^{1/3}

18

Context: mathematics

Geometric models of mathematical problems extend impact of geometric algs far beyond direct application to physical models

ī.

Example 1:

geometric problem	mathematical equivalent			
intersect two lines (2D)	solve 2 equations in 2 unknowns			
intersect three planes (3D)	solve 3 equations in 3 unknowns			

algorithm: gaussian elimination

Example 2:

geometric problem	math equivalent		
find convex polytope defined by intersecting half-planes	solve simultaneous inequalities		
is given point inside polytope?	linear programming		

algorithm: simplex

Vast number of applications (stay tuned)

Context: algorithm design paradigms

Draw from knowledge about fundamental algorithms

Design and use levels of abstraction

- use fundamental algorithms and data structures
- know their performance characterisitics

Carefully implement primitives

Recognize intrinsically difficult problems

For many important problems

- classical approaches give good algorithms
- need research to find best algorithms
- no excuse for using dumb algorithms

all possibilities	double recursion	2 ^N
brute force	nested for loops	N ²
divide-and-conquer	recursion, trees	N log N
elegant idea	single for loop	N
randomization	random choices	Ν
	21	