
overview
primitives

convex hull algorithms
context

Geometric Algorithms

2

Important and far-reaching applications

• models of physical world
examples: maps, architecture, medical imaging

• computer graphics
examples: movies, games, virtual reality

• mathematical models
stay tuned

Ancient mathematical foundations, but
most geometric algorithms are less than 30 years old

Knowledge of fundamental algorithms is critical

• use them directly

• use the same design strategies for harder problems

• learn how to compare and evaluate algorithms

Geometric algorithms

3

Humans have spatial intuition in 2D and 3D: computers do not!

Example: Is a given polygon convex?

Warning: intuition may not be helpful

1 6 5 8 7 2
7 8 6 4 2 1

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 3 20

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

we see these programs see these

4

Point

• two numbers (x, y)
#typedef struct {double x; double y;} Point;

Line

• two numbers a and b [ax + by = 1]

Line segment

• four numbers (x1, y1) and (x2, y2)

• two points p0 and p1
#typedef struct {Point x; Point y;} LineSegment;

Polygon

• sequence of points
Point p[N];

No shortage of other geometric shapes
     triangle, square, circle, quadrilateral, parallelogram, ...

3D and higher dimensions more complicated

Elementary geometric primitives (2D)

lines through origin are exceptional



5

Typical scenario in algorithm design: 

Example:

Is a given polygon simple?

Do two given line segments intersect?

Are two given points on the same side of a given line?

Is the route connecting three given points a ccw turn?

Building layers of abstraction

no

yes

no

yes

Use a more primitive operation!

6

Input: points p0, p1, and p2

Output:

1   if p0-p1-p2 is a ccw turn

-1   if p0-p1-p2 is a cw turn

0   if p0, p1, p2 are collinear

Approach: compare slopes

CCW implementation

  int ccw(Point p0, Point p1, Point p2)
    {
      int dx1, dx2, dy1, dy2;
      dx1 = p1.x - p0.x; dy1 = p1.y - p0.y;
      dx2 = p2.x - p0.x; dy2 = p2.y - p0.y;
      if (dx1*dy2 > dy1*dx2) return 1;
      if (dx1*dy2 < dy1*dx2) return -1;
      return 0;
    }

slope dx2/dy2

slopes are equal

p0
p1

p2

p0
p1

p2

p0
p1 p2

p0
p1p2

p0
p1

p2

slope dx1/dy1

7

Is the route connecting p0, p1, and p2 a ccw turn?
ccw(p0, p1, p2)

Are points q and r on the same side of line L?

ccw(L.p0, L.p1, q) == ccw(L.p0, L.p1. r)

Do line segments L and S intersect?

!same(L.p0, L.p1, S) && !same(S.p0, S.p1, L)

Is a given polygon simple?

      for(i = 0; i < N; i++)
        for(j = i+1; j < N; j++)
          if (intersect(p[i], p[j]) return 0;
      return 1;

Layers of abstraction example (continued)

no

yes

no

yes

p0
p1

p2

r

q

L

L
R

Stay tuned (next lecture) 
for faster implementation 8

Still not quite right! 

Bug in degenerate case with four collinear points

Does AB intersect CD?

• on the line in the order ABCD: NO

• on the line in the order ACDB: YES

Need more careful CCW implementaton

• more work when dx1*dy2 == dx2*dy1 (see book)

Lessons:

• geometric primitives are tricky to implement

• can't ignore degenerate cases

Line-segment intersection implementation bug

A
B

C
D

A
B

C
D



9

Convex hull: smallest polygon enclosing a given set of points

A polygon is convex iff every line whose endpoints are within the
polygon falls entirely within the polygon

Lemma: Hull must be convex

Running time of convex hull algorithms can depend on

• N: number of points

• M: number of points on the hull

• point distribution

Convex hull of a point set

convex not convex

10

Idea: consider points one by one

• next point inside current hull—ignore

• next point outside current hull—update

Two subproblems to solve

• test if point inside or outside polygon

• update hull for outside points

Both subproblems

• brute force: O(M) to check all hull points

• can be improved to O(log M) with binary search

• relatively cumbersome to code

Randomize: take points in random order

Total running time: O(N log M)

Incremental convex hull algorithms

11

Idea: presort on x for incremental algorithm

Equivalent to imagining sweep line moving
from left to right through points

plus: eliminates “inside” test

minus: have to pay cost of sort

Total cost: O(N log N)

Sweep-line convex hull algorithm

12

Divide point set into two halves

• solve subproblems recursively

• merge results

Idea 1: take points in random order

Idea 2: divide space in half (presort on one coordinate)

Both O(N log N) but relatively cumbersome to code

Divide-and-conquer convex hull algorithms



13

Idea:

• point with lowest y coordinate is on the hull

• sweep line ccw anchored at current point—first point hit is on hull

Package-wrapping convex hull algorithm

14

Input: polygon (represented as an array of N points)

Output: M (array rearranged such that first M points are convex hull)

Implementation of package-wrapping algorithm

  int wrap(Point p[], int N)
    { int i, min, M; double th, v; Point t;
      for (min = 0, i = 1; i < N; i++)
        if (p[i].y < p[min].y) min = i;
      p[N] = p[min]; th = 0.0;
      for (M = 0; M < N; M++)
      {
        t = p[M]; p[M] = p[min]; p[min] = t;
        min = N; v = th; th = 360.0;
        for (i = M+1; i <= N; i++)
          if (theta(p[M], p[i]) > v)
            if (theta(p[M], p[i]) < th)
            { min = i; th = theta(p[M], p[min]);}
        if (min == N) return M;
      }
    }

find point with min y coordinate

find min angle > v

2D analog of selection sort: O(NM) running time

implementation of theta
 omitted (can use slope)

15

Idea:

• sort points by angle to get simple closed polygon

• scan polygon—discard points causing cw turn

Graham scan convex hull algorithm

16

  int grahamscan(Point p[], int N)
    { int i, min, M; Point t;
      for (min = 1, i = 2; i <= N; i++)
        if (p[i].y < p[min].y) min = i;
      for (i = 1; i <= N; i++)
        if (p[i].y == p[min].y)
          if (p[i].x > p[min].x) min = i;
      t = p[1]; p[1] = p[min]; p[min] = t;
      quicksort(p, 1, N);
      p[0] = p[N];
      for (M = 3, i = 4; i <= N; i++)
        {
          while (ccw(p[M],p[M-1],p[i]) >= 0) M--;
          M++; t = p[M]; p[M] = p[i]; p[i] = t;
        }
      return M;
    }

Input: polygon (represented as an array of N points)

Output: M (array rearranged such that first M points are convex hull)

Implementation of Graham scan algorithm

swap “lower left” point with first

back up to include i on hull

points in p[1]...p[N]

p[0] is sentinel

add i to putative hull

implementation of less uses angle with p[1]

Total cost: O(N log N) (for sort).



17

Idea: fast test to eliminate most inside points

quick: use quadrilateral Q
    min (x+y), max(x+y), min(x-y), max(x-y)
quicker: use inscribed rectangle R

Three-phase algorithm

• pass through all points to compute R

• eliminate points inside R

• find convex hull of remaining points

Option 1: use recursion (”quickhull”)

• relatively cumbersome to implement

• O(N) worst case

Option 2: use Graham scan

• few points remaining in many situations

• O(N + M lg M) avg case (+ fast inner loop)

Quick-elimination convex hull algorithms

not many points in Q-R

Q

not many points in R-hull

R

18

“Guaranteed” asymptotic cost to find M-point hull in N-point set

How many points on hull?

• Worst case: N

• Average case: difficult problems in stochastic geometry

• uniform in a convex polygon with O(1) edges: log N

• uniform in a disc: N1/3

Convex hull algorithms cost summary

* assumes “reasonable” known point distribution
*  leading coefficient higher than for sorting

Package wrap NM

Graham scan N log N (sort time)

Divide and conquer * N log N

Quick elimination * N

Incremental elimination N log M

Sweep line N log N (sort time)

19

Multifaceted (convex) polytope encloses points

NOT a simple object

• vertices, edges, facets

• return extreme points (hull vertices)—no natural order

Example: N points d dimensions 

• d=2: convex hull

• d=3: Euler's formula (v - e + f = 2)

• d>3: exponential number of facets at worst

Some of the same approaches work (costs higher)

• Package-wrap

• Divide-and-conquer

• Randomized

• Interior elimination

Higher dimensions

20

Geometric models of mathematical problems extend impact of 
   geometric algs far beyond direct application to physical models

Example 1:

algorithm: gaussian elimination

Example 2:

algorithm: simplex

Vast number of applications (stay tuned)

Context: mathematics

geometric problem mathematical equivalent
intersect two lines (2D) solve 2 equations in 2 unknowns

intersect three planes (3D) solve 3 equations in 3 unknowns

geometric problem math equivalent

find convex polytope defined by
intersecting half-planes

solve simultaneous
inequalities

is given point inside polytope? linear programming



21

Draw from knowledge about fundamental algorithms

Design and use levels of abstraction

• use fundamental algorithms and data structures

• know their performance characterisitics

Carefully implement primitives

Recognize intrinsically difficult problems

For many important problems

• classical approaches give good algorithms

• need research to find best algorithms

• no excuse for using dumb algorithms

Context: algorithm design paradigms

all possibilities double recursion 2N

brute force nested for loops N2

divide-and-conquer recursion, trees N log N
elegant idea single for loop N

randomization random choices N


