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A model for representing image contours in a form that allows
interaction with higher level processes has been proposed by Kass
et al. (in Proceedings of First International Conference on Com-
puter Vision, London, 1987, pp. 259-269). This active contour
model is defined by an energy functional, and a solution is found
using techniques of variational calculus. Amini et al. (in Proceed-
ings, Second International Conference on Computer Vision, 1988,
pp. 95-99) have pointed out some of the problems with this ap-
proach, including numerical instability and a tendency for points
to bunch up on strong portions of an edge contour. They proposed
an algorithm for the active contour model using dynamic pro-
gramming. This approach is more stable and allows the inclusion
of hard constraints in addition to the soft constraints inherent in
the formulation of the functional; however, it is slow, having
complexity O(nm?), where n is the number of points in the contour
and m is the size of the neighborhood in which a point can move
during a single iteration. In this paper we summarize the
strengths and weaknesses of the previous approaches and present
a greedy algorithm which has performance comparable to the
dynamic programming and variational calculus approaches. It
retains the improvements of stability, flexibility, and inclusion of
hard constraints introduced by dynamic programming but is more
than an order of magnitude faster than that approach, being
O(nm). A different formulation is used for the continuity term
than that of the previous authors so that points in the contour are
more evenly spaced. The even spacing also makes the estimation
of curvature more accurate. Because the concept of curvature is
basic to the formulation of the contour functional, several curva-
ture approximation methods for discrete curves are presented and
evaluated as to efficiency of computation, accuracy of the estima-
tion, and presence of anomalies. © 1992 Academic Press, Inc.

1. INTRODUCTION

The problem of how to represent a set of points which
have been determined to lie on an edge is a challenging
one. Kass et al. [3] have proposed a model called active
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contours (snakes) which has the advantage that the final
form of a contour can be influenced by feedback from a
higher level process. The contour is initially placed near
an edge under consideration, then image forces draw the
contour to the edge in the image. As the algorithm iter-
ates, the energy terms can be adjusted by higher level
processes to obtain a local minimum that seems most
useful to that process. However, there are some prob-
lems with the minimization procedure used. Amini et al.
(1] pointed out some of these, including instability and a
tendency for points to bunch up on a strong portion of an
edge. They have proposed a dynamic programming algo-
rithm for minimizing the energy functional that allows
addition of hard constraints to obtain more desirable be-
havior of the snakes.

In this paper we present some of the problems in both
methods and propose a further algorithm which is stable,
is flexible, allows hard constraints, and runs much faster
than the dynamic programming method. The energy
functional being minimized has a continuity term and a
curvature term in addition to the image energy and exter-
nal energy terms. In the method presented here a differ-
ent formulation is used for the continuity term so that the
points will be more evenly spaced on the contour, rather
than minimizing distance between points as in the pre-
vious methods. Discrete approximation of curvature in
an accurate and efficient manner is necessary for the
curvature term, so a number of different approximations
are examined and evaluated.

In the next section we will discuss the previous meth-
ods of controlling active contours and point out some of
the strengths and weaknesses of the approach as a whole,
and of the particular methods used. Section 3 presents
curvature estimation methods for discrete curves. Com-
putational efficiency is discussed and anomalies occur-
ring with some of the methods, especially when points
are not evenly spaced, are pointed out. In Section 4 a
new method is presented which uses a greedy approach.
The pseudo-code for this method is given in Section 5.
All three methods were applied to real images and the
results are given in Section 6.
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2. MINIMUM ENERGY CONTOURS

At present it is common to use more than one scale to
detect edges or represent contours {2, 4, 8]. Rather than
combine the information derived at the different scales
into a unified “‘best’’ representation of the information,
another approach is to attempt to keep the information at
different scales available so that higher level processes
can use the most meaningful representation. This was
one of the goals of Kass, Witkin, and Terzopoulos [3]
when they developed their Active Contour Models
(called snakes). They developed a controlled continuity
spline which can be operated upon by internal contour
forces, image forces, and external forces which are sup-
plied by an interactive user, or potentially by a higher
level process.

In their work, Kass et al. represented a contour by a
vector, v(s) = (x(s), y(s)), having the arc length, s, as
parameter.' They defined an energy functional of the con-
tour and described a method for finding contours which
correspond to local minima of the functional. The energy
functional is written as

1
E:‘nake = J:) Esnake(v(s))ds

= [} Bu¥(5) + Einage¥() + EconV(s)ds. (1)

Ei, represents the internal energy of the contour due to
bending or discontinuities, Ein,,. is the image forces, and
E o, is the external constraints. The image forces can be
due to various events. The ones presented by Kass er al.
are lines, edges, and terminations. The internal spline
energy is written

Eine = (@ @V + B)|vss()])/2. )

The above equation contains a first-order term which will
have larger values where there is a gap in the curve, and a
second-order continuity term which will be larger where
the curve is bending rapidly. The values of @ and 8 at a
point determine the extent to which the contour is al-
lowed to stretch or bend at that point. The relative sizes
of a and B can be chosen to control the influence of the
corresponding constraints. For instance, a large value of
B would make the second-order continuity term larger
than the other terms; thus the minimum value of E*
would occur when the curve was smoother, approaching

! Lower-case, bold letters like v will be used to denote vectors when
they are interpreted as points, while lower-case, bold letters with an
arrow above (1) will be used when the quantity represented is a vector
from one point to another.

a circle for a closed contour, and a straight line for a
contour which was not closed. If « is 0 at a point, a
discontinuity can occur at that point, while if 8 is 0, a
corner can develop, because large values of these terms
would not be included in the total. The minimum energy
contour was determined using techniques of variational
calculus.

Amini, Tehrani, and Weymouth [1] point out some of
the problems involved in this method of solution and pro-
pose that the contour having minimum energy be deter-
mined using dynamic programming rather than varia-
tional calculus. This allows the introduction of
constraints that cannot be violated, called hard con-
straints, as well as the first- and second-order continuity
constraints which are inherent in the problem formula-
tion. These latter are known as soft constraints because
they are not satisfied absolutely, only to a certain degree.

At this point it would be meaningful to examine the
advantages and disadvantages of the problem formula-
tion itself, and of the two proposed methods of solution.
A “*+”" by an item on the list indicates a positive feature,
while a “*—"" indicates a drawback. First we will consider
advantages and disadvantages which apply to the state-
ment of the problem and to both methods of solution.

+ A closed contour which is placed around an object
can span gaps in the edge map. Similarly, if an object
with texture has edges which make it appear as several
smaller objects, the contour can outline the object as a
whole, giving a continuous edge contour for the entire
object. See Fig. 1 for an example of this.

+ Information from a higher level process can be used
to determine values of the external constraint term and
the values of « and B. For example, corners could be
allowed at certain points and the effect on the contour
examined.

— No guidelines are given in either method for deter-
mining the values of « and 8. Also, both methods appar-
ently use the same value for « and 8 at every point, and
no discussion or examples are given explaining how

FIG. 1. Contour outlines entire object, rather than following texture
edges on the surface of the object.
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changing these values affects the contours. It happens
that the values are critical, and must be chosen carefully
to obtain meaningful results.

— Related to the previous item, if 8 is constant, cor-
ners will not be well defined. There is also a problem if
points are far apart and a corner falls between two points
on a contour.

— The first derivative term in Eq. (2) is approximated
by a finite difference, |vi]> = (x; — x,-1)* + (y; — yi1)%
This is equivalent to minimizing the distance between
points, and has the effect of causing the contour to
shrink.

— Points can move along the contour as well as perpen-
dicular to it, thereby allowing points to bunch up in seg-
ments of the contour where the image forces are higher.
The hard constraints provided for in the method of Amini
et al. can be used to minimize this problem.

The following list applies to the Kass method only.

+ Forces can travel large distances along the contour
in one iteration, allowing faster convergence.

— Image forces and constraints need to be differentia-
ble in order to guarantee convergence. Thus it is not
possible to include hard constraints, such as minimum
distance between points.

— Intermediate results are not meaningful. The con-
tour does not smoothly approach the minimum value. It
was for this reason that the name snakes was given to the
contours.

The next list gives characteristics of the Amini method.

+ Hard constraints can be introduced into the method.

+ Points are moved on the discrete grid, as opposed to
the Kass method which computes point coordinates as
real numbers, allowing points to fall between the discrete
coordinates.

+ This method is numerically stable.

— Memory requirements are large, being O(nm?),
where n is the number of points on the contour and m is
the number of possible locations to which a point may
move in a single iteration.

— The method is very slow, being O(nm?).

In this paper we resolve most of the difficulties with
both previous methods. The inclusion of hard con-
straints, use of the discrete grid for point positions, and
stability that were achieved by the dynamic programming
method are preserved in this method. In addition the
choices of values for «, 8, and y (a new parameter) are
easily determined to balance the relative strengths of the
terms in the functional. Reformulation of the first-order
continuity term causes the points to be evenly spaced on

the contour, removing the shrinking behavior of the con-
tour and making the estimation of the second-order conti-
nuity term more accurate. Furthermore, the implementa-
tion is efficient in both time and space requirements.

3. CURVATURE ESTIMATION

Both Kass et al. and Amini et al. approximate the de-
rivatives in Eq. (2) by finite differences. If v; = (x;, y;) is a
point on the contour, the following approximations are
used:

dV,‘ 2
il = Vi— v = — xi-)? + (i —yic)? ()
and
dzv,- 2
lW =~ |viog = 2v; + v
= (xmy — 2+ 2 + (yi1 — 2y v D)

Note that two assumptions have been made here. The
first assumption is that the points are spaced at unit inter-
vals. If the points are evenly spaced, then Eq. 3 should be
divided by d?, where d is the distance between points,
and Eq. 4 by d*. This is not a major problem since the
values of @ and 8 can be chosen to include these factors.
In that case d will have to be made available to any higher
order process which is attempting to assign values to «
and 3 automatically.

If the points are not evenly spaced, the first derivative
term will be incorrect by a factor of d?, where d; is the
distance between points i and i — 1. This will cause the
first-order continuity term in the energy expression to be
larger for points which are farther apart. In addition, the
second derivative term will give higher estimates of cur-
vature when the points are not evenly spaced.

The second assumption is that the parameter is arc
length. When this assumption is true, then curvature is
given by |vi|. However, when the parameter is not arc
length, curvature is given by

x'y" = x"y’'
N ®
for a parameter ¢ where x' = dx/dt, x" = d*/dt?, y' =
dyl/dt, and y" = d%y/dt?. The quantity |v,| = Vx"2 + y"?
does not measure curvature when the parameter ¢ is not
arc length.

It is not clear what measure of curvature is the best
reflection of the geometric situation depicted by the con-
tour. The mathematical definition of curvature is d6/ds,
where @ is the angle between the positive x-axis and the
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FIG. 2. Arrangement of points a, b, and ¢ for Table 1.

tangent vector to the curve. This is a coordinate indepen-
dent measure, as the same value will be obtained for 46
when any line is substituted for the x-axis; thus the mea-
sure is invariant under rotation. That is a desirable fea-
ture for model matching. Another desirable feature which
is not present in curvature is scale invariance. A circle
with radius r has curvature 1/r at each point. Thus when
the radius is doubled, the curvature is halved.

The remainder of this section presents five possible
measures of curvature in discrete contours, and dis-
cusses the characteristics of each. In order to demon-
strate the difference in the results obtained by these dif-
ferent approximations, they were all applied to the two
situations displayed in Fig. 2 and the results are displayed
in Table 1. In each case v;_; is point a, v; is point b, while
v;+1, the third point necessary in the curvature estimate,
can be any one of the points ¢; . . . ¢s. The first section
of the table is the situation in Fig. 2a where a and b are on
a horizontal or vertical line. The lower section is the case
where a and b lie on a diagonal line. When the external
angle is 0, #/2, or m, the distances from & to its two
neighbors are equal, being 1 for the horizontal case and
V2 for the diagonal case. When the angle is 7/4 or 37/4
the two distances are not equal, being 1 and V2.

It will be necessary to estimate the value of differen-

TABLE 1
Comparison of Estimates of the Square of the Curvature Using
Different Methods

l_-l)i EHI 2

c (do/ds)? x? [ves]? [, — b [6,]
Horizontal case

1 0.0 0.0 0.0 0.0 0.0

2 0.42 0.512 0.40 1.0 0.59

3 2.47 8.0 2.0 2.0 2.0

4 3.80 64.0 2.34 5.0 3.41

5 9.87 © 4.0 4.0 4.0
Diagonal case

1 0.0 0.0 0.0 0.0 0.0

2 0.42 0.512 0.40 1.0 0.59

3 1.23 4.0 1.0 4.0 2.0

4 3.80 64.0 2.34 5.0 3.41

S 4.93 £ 2.0 8.0 4.0

Note. The first section of the table is the horizontal situation of FIG.
2, the lower section is the diagonal case. Column one gives (do/ds)?,
column two is k2 using Equation S, and column three gives vy 2
Column four is [v;.; — 2v; + v,.,]? and column five gives [Axi/As; —
Axper/Asi P + [Ayi/As; — A)’i+1/ASi+1]2-

That is, dx at the point v; is approximated by x; — x;_, and
is denoted Ax;. Occasionally when the backward differ-
ence might vary substantially from the forward differ-
ence, (x;+; — x;), the centered difference will be used
instead. It is given by (x;+; — x;_1)/2. Whenever this is
done, it will be pointed out. Similar notation for finite
difference estimation of differentials will be used for all
variables.

The first possibility for approximating curvature is to
apply the definition of curvature directly. If a discrete
approximation of d6/ds is computed for evenly spaced
points, it has the property that it depends linearly on the
angle Af between the two vectors, #; = (x; — Xi—1, ¥i —

tials in the following discussion. The usual convention y;.,)and U;y; = (xiy; — X;, Vi=1 — yi). The formula for Af is
will be to use the backward difference for this estimate. given by
AB = cos-! i:l)i ' ;ﬁH—l ~ cos- (i — xi)(G — X)) + (i = Y)Y — i) .
| [t Vi -5t Pl = 50T T O — 30

Given a closed polygon and a direction, Af = d@ is the
external angle as the circumference is traversed. The
centered difference, (Ass; + As)/2 = (U] + [0:])/2,
averages the distance from point i to its two neighbors
and thus gives the best estimate of ds. The smallest value
for As is 1 and the largest value of A6 is 7r; thus values of
A0/As all fall in the interval [0, #]. This is not true for

continuous curves, where rapidly bending curves can
have very large curvature. However, when a curve is
digitized, a limit is placed on the curvature. Although
giving intuitively satisfying results, this measure requires
a lot of computation. Column one of Table 1 gives values
of (d8/ds)>.

Evaluating the expression for curvature in Eq. (5)
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should give results identical to that of d8/ds for continu-
ous curves. However, this is not the case for discrete
curves. When the angle between u; and u;,; becomes
large, Ax; has a value near —Ax;,; and Ay;is near —Ay;;;.
Thus when the centered difference is used to estimate dx
and dy, these values become very small, giving a value
for curvature which is unbounded, as it is for continuous
curves. Column two of Table 1, the discrete approxima-
tion to Eq. 5, is comparable to the other estimates for
small angles, but as (Ax; + Ax;1)/2 and (Ay; + Ay 1)/2
grow smaller, the estimate of k2 becomes very large.

Converting the parameter to arc fength and then com-
puting the second derivative is theoretically equal to the
two previous measures for continuous curves. The dis-
crete approximation is given by

_ L \/(Ax,» AX,’H)Z <Ayl-
|vss| As AS,‘ AS,‘+1 * A_Sl_

where As is (As; + As;41)/2. The third column of Table 1
gives the square of the discrete estimate of the second
derivative vector. Note in the diagonal case for column
three that the curvature for ¢, is larger than for ¢s, even
though the path a — b — c¢5 actually doubles back on
itself, and should intuitively have higher curvature.

Another possible measure of curvature which has the
advantage of being computationally efficient is given by
the expression in Eq. (4). If u, and u, are the vectors
defined above, this is equivalent to [u, — u,[2. It reflects
not only the difference between the directions of the two
vectors, but also the difference in length. Thus if the
three points in the estimate are not evenly spaced the
curvature will be larger. For example, a, b, and ¢ may lie
on a straight line and curvature will be nonzero. The
fourth column in the table is the square of the curvature
estimate using Eq. (4). Note that in column four, ¢4 has
the largest value for the horizontal case as it does for
column three in the diagonal case.

Normalizing the two vectors before taking the differ-
ence removes the length differential, and the measure
depends solely on relative direction. Thus it will be
bounded, with values in the interval [0, 2]. The length of
;. /|d;. 1| — U/|0,] is given by 2 sin(#/2), where 6, 0 < § <
7, is the difference in direction of the two vectors as
shown in Fig. 3. Column five of the table gives the values
obtained by this formula.

A)’i+1>2]
Asiy) (6)

FIG. 3. Difference in direction of two vectors.

b
(a) () (©)

FIG. 4. Estimation of curvature by fitting a circle to three points. (a)
Angle between vectors is large, hence fit is good. (b) Small angle means
a circle is not a good approximation to the curve through the three
points. (¢) When distance between points is not equal, circles having the
same radius will go through {a, b, ¢}, {a, b, d}, and {a, b, €}.

It is interesting that the last three measures are closely
related. Multiplying the discrete approximation of |v,,| by
As gives the difference of the normalized vectors (column
five). When the points are evenly spaced, multiplying by
As again gives the expression in Eq. (4) (column four).

There is a sixth method of approximating curvature at
a point, that of fitting a circle through the point and its
two neighbors (e.g., [5]). The radius of the circle will give
a good estimate of the radius of curvature if a circle is a
good approximation of the curve through the three
points. However, this only gives a reasonable estimate
when the angle between the two vectors is large and
when the points are evenly spaced (Fig. 4a). When the
angle between the two vectors is small, the circle does
not give a good approximation to the curve through the
three points, and the curvature estimate will be too small
(Fig. 4b). If the points are not evenly spaced, very differ-
ent situations, which do not seem to have the same cur-
vature, will give a circle having the same radius. For
example, the sets of points {a, b, ¢}, {a, b, d}, and {a, b, €}
would have a circle of the same radius fitted through
them (Fig. 4c) even though the curvature of the curve
through the different sets does not appear the same.
Thus, this method does not seem to have general enough
application to consider here.

4. GREEDY ALGORITHM

In this section a greedy algorithm will be presented
which allows a contour with controlled first and second
order continuity to converge on an area of high image
energy, in this case edges. This algorithm allows the in-
clusion of hard constraints as described by Amini et al.
{1] but is much faster than their O(nm?) algorithm, being
O(nm) for a contour having n points which are allowed to
move to any point in a neighborhood of size m at each
iteration. While the algorithm is not guaranteed to give a
global minimum, the experimental results were compara-
ble to other methods.
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The quantity being minimized by this algorithm is

E = [ (@(5)Econ + BO)Ecuns + ¥(Eimage) ds. ()

The form of this equation is similar to Eq. (1). The first
and second terms are first- and second-order continuity
constraints and will be described in detail later. They
correspond to Ej, in Eq. (1). The last term measures
some image quantity such as edge strength or intensity
and is the same as the middle term of Eq. (1). No term for
external constraints was included, although it would be
possible to do so. The parameters «, 8, and vy are used to
balance the relative influence of the three terms. Their
relative sizes, rather than absolute sizes, are significant.

The proposed algorithm is iterative, as are those of
Kass and Amini. During each iteration, a neighborhood
of each point is examined and the point in the neighbor-
hood giving the smallest value for the energy term is
chosen as the new location of the point. Only closed
contours are being considered, so all index arithmetic is
modulo 7.

In the examples given below, o = 1, B is either 0 or 1
(depending upon whether a corner is assumed at that
location), and v = 1.2. These were chosen so that the
image gradient will have slightly more importance than
either of the continuity terms in determining where points
on the contour move.

Determining a suitable approximation for the first term
in Eq. 7, the continuity term, presents some difficulties.
Using |v; — v;-|* causes the curve to shrink, as this is
actually minimizing the distance between points. It also
contributes to the problem of points bunching up on
strong portions of the contour. These effects are even
worse with a greedy algorithm where each point is moved
based on local considerations. The tendency is for points
to always be moved nearer the previous point, which also
moves a point farther from the following point. This
causes a chain reaction, moving all points toward the
previous one. In observing the behavior of the given algo-
rithms, it became apparent that a term which encouraged
even spacing of the points would reflect the desired be-
havior of the contours more than one which caused
shrinking. The original goal of encouraging first-order
continuity is still satisfied. Thus the algorithm presented
here uses the difference between the average distance
between points, d, and the distance between the two
points under consideration: d — |v; — v;_y|. Thus points
having distance near the average will have the minimum
value. The value is normalized by dividing by the largest
value in the neighborhood to which the point may move,
giving a value in [0, 1]. At the end of each iteration a new
value of d is computed.

The second term in Eq. (7) is curvature. Since the for-

mulation of the continuity term causes the points to be
relatively evenly spaced, |v;i., — 2v; + V. *, the formula
in column four of Table 1, gives a reasonable estimate of
curvature multiplied by a constant. The constant term is
not significant since this term, like the continuity term, is
normalized by dividing by the largest value in the neigh-
borhood, giving a number from 0 to 1. This formula has
the advantage that it is the most computationally efficient
of the ones discussed in the previous section.

The third term in Eq. (7), Einage, 18 the image force,
which is gradient magnitude. Gradient magnitude at each
point in the image is input as an eight bit integer, with
values 0—255. There is a significant difference between a
point with gradient magnitude 240, and one having mag-
nitude 255. This is not reflected when the values are nor-
malized by division by 255. Thus, given the magnitude at
a point (mag) and the maximum (max) and minimum
(min) gradient in each neighborhood, (min — mag)/
(max — min) is used for the normalized edge strength
term. This gradient magnitude term is negative so that
points with large gradient will have small values. If max
— min < 5 then min is given the value max — 5. This
prevents large differences in the value of this term from
occurring in areas where the gradient magnitude is nearly
uniform. For example, when all points in the neighbor-
hood being examined had values 47, 48, and 49, the gradi-
ent magnitude term would be 0, —0.5, or —1.0 for points
with essentially the same gradient magnitude. Thus a
point would have a strong tendency to stay at a point with
gradient magnitude 49, even though it is not a strong edge
point. Having a minimum of 5 in the denominator would
give —0.6, —0.8, or —1.0 for the gradient term, more
accurately reflecting the similarity of the points. Near an
edge this situation does not normally arise, but if the
contour has points that begin fairly far from the final edge
or span regions where there are gaps in the edge, points
on the contour may resist moving without this constraint.

At the end of each iteration, a step is included which
determines the curvature at each point on the new con-
tour, and if the value is a curvature maximum, sets 3; = 0
for the next iteration. This step functions as a primitive
high level process giving feedback to the energy minimi-
zation step. Curvature is computed at each of the » points
by [Axi/As; — Axi/Asia? + [Ayid/As; — Ayici/Asi ]2
This is the measure given in column five of Table 1,
which is related to the angle between the vectors. This
formula requires more computation than the one used in
the main computation of the algorithm, but is computed
fewer (n) times and is used because determining a mean-
ingful threshold is easy. Nonmaxima suppression is then
performed on curvature values along the contour, and
curvature maxima points having curvature above a
threshold are considered corner points for the next itera-
tion. A further condition for designating a point as a cor-
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ner is that the gradient magnitude must be above some
minimum value. This prevents corners from forming until
the contour is near an edge. Yuille ef al. [9] used a similar
approach in their deformable template matching. They
changed the coefficients which determined the relative
strengths of the terms as the convergence process en-
tered different stages. In summary 8 is set equal to zero
at the points satisfying the above three conditions: curva-
ture maxima above a curvature threshold and above a
gradient threshold. This allows a corner to form there,
and reduces the curvature in the segments between these
points.

Figure 5 demonstrates how the algorithm works. The

energy function is computed for the current location of v;
and each of its neighbors. The location having the small-
est value is chosen as the new position of v;. v,_; has
already been moved to its new position during the current
iteration. Its location is used with that of each of the
proposed locations for v; to compute the first-order conti-
nuity term. The location of v;.; has not yet been moved.
Its location, along with that of v,_|, is used to compute
the second-order constraint for each point in the neigh-
borhood of v;. For i = 0, only old values are used. For
this reason vg is processed twice, one as the first point in
the list, and once as the last point. This helps make its
behavior more like that of the other points.

5. PSEUDO-CODE FOR GREEDY ALGORITHM

Index arithmetic is modulo #.
Initialize «;, B;, and y; to 1 for all /.

do

/* loop to move points to new locations */

fori=0ton
Emiﬂ:BIG
forj=0tom — 1|

/* point 0 is first and last one processed */

/* m is size of neighborhood */

E} = aiEcont,j + BiEcurv,j + ')’iEimage.j

if E; < Eqi, then
Emin = E/
Jjmin = j
Move point v; to location jmin

if jmin not current location, ptsmoved+ = 1

/* count points moved */

/* process determines where to allow corners in the next iteration */

fori=0ton — 1
¢ = ||_.)l,/|l_il| -

fori=0ton — 1
if (C,— > iy and C; = Cit
and c¢; > thresholdl

l-i,‘+1/|l-i,'+]||2

/* if curvature is larger than neighbors */
/* and curvature is larger than threshold */

and mag(v;) > threshold2 /* and edge strength is above threshold */

then 3, = 0
until ptsmoved < threshold3

/* relax curvature at point i */

6. EXPERIMENTAL RESULTS

In order to demonstrate the performance of the algo-
rithm described in the previous section, results are given
for the greedy algorithm developed above, for the origi-
nal variational calculus solution, and for the dynamic
programming algorithm. These programs were run on
one synthetic image, a Square (Fig. 6), and three real
images: Box (Fig. 7), Bottle (Fig. 8), and Cup (Fig. 9).
The Cup image tested the behavior of the algorithms

Vi

FIG. 5. The energy function is computed at v; and each of its eight
neighbors. The point before and after it on the contour are used in
computing the continuity constraints. The location having the smallest
value is chosen as the new position of v;.
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FIG. 6. Square. (a) Original contour, (b) Kass method, (c) Dynamic programming algorithm, (d) Greedy algorithm.

when the contour spanned a region where the edge was
weak or missing. The initial contour for the Square was
produced by the edge linking algorithm developed by the
authors [7] and was quite good to start with. In all the
image figures, the points on the contour that satisfied the
conditions of high curvature are marked with larger
squares. At these points the second-order continuity re-
straint was relaxed. The neighborhood examined at each
point consisted of the point itself and its eight neighbors.
Thus the neighborhood size, m, was 9. In the image fig-
ures, (a) shows the beginning contours, all of which had
40-60 points spaced a distance of approximately 4—6 pix-
els apart. The threshold for setting 8 = 0 was 0.25, corre-
sponding to approximately 29°. Experimental results con-
firmed that this was sufficiently large to differentiate
between what was perceived to be a corner and a curved
line. The threshold for the minimum gradient magnitude
before a corner would be marked was 100, when gradient
magnitude was in the range 0-255. This is not a critical

value, and a wide range of values gave similar results.
The final threshold set was the number of points moved
to determine that convergence had occurred. Small,
nonzero values (2-5) worked quite well for this. See the
third column in Table 2 for values actually used. The
same method and threshold were used to determine
convergence in the greedy and the dynamic programming
methods.

Part (b) shows the result of allowing the original con-
tour to converge to the edge around the object using the
variational calculus method proposed by Kass et al.

Part (c) shows the result of the dynamic programming
algorithm for the four pictures. In order to reduce the
tendency to bunch up at strong points on the contour,
one of the hard constraints prohibited movement perpen-
dicular to the direction of maximum gradient. This did
not prevent the points not currently on the edge from
moving toward a strong edge point which was not the
nearest point to the current location, but did prevent
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FIG. 7.

edges moving along the contour to higher points once
they had reached the edge. Movement along the contour
also extended the convergence time when this constraint
was not included. The threshold given was the number of
points which moved during the iteration. Usually the
number of points being moved in each iteration dropped
sharply when the contour approached the edge location.

Box. (a) Original contour, (b) Kass method, (¢) Dynamic programming algorithm, (d) Greedy algorithm.

Note that the edge points are more closely spaced on the
strong portions of the contour while in locations like the
bottom of the cup handle there are no points.

Part (d) in each figure shows the results of the greedy
algorithm. The results achieved by all three of the meth-
ods presented are comparable, one giving slightly better
results in one image, while a different method gives bet-

TABLE 2
Comparison of Runtime in Seconds, Number of Iterations, and Number of Second-Order Discontinuities (Corners)
Marked for the Greedy, Dynamic Programming, and Variational Calculus Methods

Greedy algorithm

Dynamic prog. Variational calc.

Image Size Th. Secs. Iter. Cor. Secs. Iter. Cor. Secs. Iter.
Square 58 3 0.250 2 3 12.162 3 4 .350 4
Box 56 1 1.867 5 25.157 6 8 .466 4
Bottle 50 1 1.217 4 29.465 8 5 1.499 12
Cup 46 3 0.700 3 34.153 10 6 .300 4
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FIG. 8. Bottle. (a) Original contour, (b) Kass method, (¢) Dynamic programming algorithm, (d) Greedy algorithm.

ter results in another image. The greedy algorithm has
removed some of the small jogs from the inside of the
square to the outside, but the dynamic programming al-
gorithm has removed more of them. The original contour
for the square was good, so there was very little change
using any of the algorithms. Corners are not set with the
Kass method, so it gives contours that are more rounded
at the corners. The results on the Box are almost identi-
cal for the three algorithms, with the upper left edge be-
ing better with the greedy algorithm, while the upper
right edge is slightly better with the dynamic program-
ming. In the Bottle image, two points become very close
together at the top and at the right-hand side with the
dynamic programming, but remains evenly spaced in the
greedy algorithm because of the different form of the
first-order continuity constraint. The edge points do not
follow the neck of the bottle as well in the greedy algo-

rithm. As expected, the contour does not follow the right
side of the cup well with any of the methods. Where the
cup edges are not strong, points belonging to the back-
ground appear to be the points converged to with the
greedy algorithm. All three converged to the shadow
edge at the right-hand bottom corner of the cup rather
than to the cup itself, since that was the first edge en-
countered as the contour approached the cup.

Table 2 gives the number of points in each contour, the
threshold used for convergence, the user times in sec-
onds, the number of iterations required to converge, and
the number of points of high curvature at which the
second-order continuity constraint was relaxed by setting
Bto 0. The algorithms were implemented in C on a Harris
HCX9 minicomputer. Using the greedy algorithm, the
speedup over dynamic programming was significant in all
cases, varying from a factor of 13 for the Box, to 48 for
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FIG. 9. Cup. (a) Original contour, (b) Kass method, (c) Dynamic programming algorithm, (d) Greedy algorithm.

the Cup and Square. Neither method was significantly
better in the number of iterations required, with the
Square and Cup having fewer iterations with the greedy
algorithm, while the Box and Bottle required fewer itera-
tions with the dynamic programming algorithm. The
results of the contours obtained with the greedy algo-
rithm are at least as good as those of the dynamic pro-
gramming algorithm, and the run times are much better.
The variational calculus approach required time compa-
rable to the greedy method for each iteration, but usually
converged in fewer iterations. If values of 8 were allowed
to change between iterations, the inverse of a penta-
diagonal n x n matrix would need to be computed, slow-
ing its speed.

Figure 10 shows a sequence of images produced as the
contour converges to the edge of the bottle, using the
greedy algorithm. The edges all move smoothly toward

the bottle except for one point at the right-hand bottom
corner which is initially stationary, then as the curvature
and continuity energy becomes large in that area it begins
to move as well. In the final image the contour has settled
nicely around the edges of the bottle.

7. CONCLUSIONS

A method of controlling snakes has been presented
which combines speed, flexibility, and simplicity. It was
compared to the original variational calculus method of
Kass et al. and the dynamic programming method devel-
oped by Amini et al. and found to be comparable in final
results, while being faster than dynamic programming
and more stable and flexible for including hard con-
straints than the variational calculus approach. The intro-
duction of the concept of curvature highlighted the prob-
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FIG. 10. Sequence showing convergence of a contour to edges of bottle using the greedy algorithm.

lem of how to approximate curvature when a curve is
represented by a set of discrete points. The advantages
and disadvantages of a number of different approxima-
tions of curvature were pointed out.
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