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Abstract

One of the central problems in stereo matching (and
other image registration tasks) is the selection of opti-
mal window sizes for comparing image regions. This
paper addresses this problem with some novel algo-
rithms based on iteratively diffusing support at dif-
ferent disparity hypotheses, and locally controlling the
amount of diffusion based on the current quality of the
disparity estimate. It also develops a novel Bayesian
estimation technique which significantly outperforms
techniques based on area-based matching (SSD) and
reqular diffusion. We provide experimental results on
both synthetic and real stereo tmage pairs.

Introduction and related work

Most area-based approaches to the stereo corre-
spondence problem perform the following three tasks:

1

1. For each disparity under consideration, compute
a per-pixel matching cost;

2. Aggregate support spatially (e.g. by summing
over a window, or by diffusion);

3. Across all disparities, find the best match based
on the aggregated support.

The focus of this paper is the second step, aggrega-
tion of support. A central problem is to find the op-
timal size of the support region. If the region is too
small, a wrong match might be found due to ambigui-
ties and noise. If the region is too big, it can no longer
be matched as a whole due to foreshortening and oc-
clusion, with the result of lost detail and blurring of
object boundaries.

Kanade and Okutomi [10] have proposed adaptive
windows, square windows that extend by different
amounts in each of four directions. The optimal win-
dow size is found by a greedy algorithm (gradient de-
scent) based on an estimate of disparity uncertainty
in the current window. In this paper we propose a
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different approach: aggregating support with a non-
uniform diffusion process.

A support region can either be two-dimensional at
a fixed disparity (favoring fronto-parallel surfaces), or
three-dimensional in z-y-d space (supporting slanted
surfaces). Two-dimensional evidence aggregation has
been done using square windows (traditional), Gaus-
sian convolution [14], and windows with adaptive sizes
[10]. Three-dimensional support functions that have
been proposed include limited disparity difference [§],
limited disparity gradient [12], and Prazdny’s coher-
ence principle [13], which can be implemented using
two diffusion processes [17].

Some matching costs, such as correlation and non-
parametric measures are defined over a certain area of
support, and thus combine the cost and aggregation
steps into one. Measures that can be accumulated in a
separate step, however, have the following advantages:

e Efficiency: the measure can be aggregated with a
single convolution (or box-filter) operation [14];

e Parallelizability: the aggregation step can be im-
plemented on highly parallel architectures using
local iterative diffusion [17];

e Adaptability: the measure can be aggregated over
locally different support regions using either ad-
Jjustable size windows [10] or a non-uniform diffu-
sion process (this paper).

Other stereo techniques include hybrid and itera-
tive techniques, such as stochastic search [1, 17], as
well as hierarchical methods. More than two images
are used in multiframe stereo to increase stability of
the algorithm [4, 11]. A long version of this paper
containing more references is available as Cornell CS
TR 96-1575 [15]. For a general survey of stereo vision
methods see [5].

2 Disparity space and SSD

Support for a match is defined over a three-
dimensional disparity space E(z,y,d). Formally, we
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Figure 1: Synthetic stereo pairs ramp and rds and the underlying disparity pattern.

define the initial disparity space Fy as
EU(IJ Y, d) = P(IL(fﬁ + d: y) - IR(I7 y))a

where Iy, I, are the intensity functions of the left and
right image respectively, and p measures the similarity
between the two intensities, e.g., p(l —7) = (I — r)? .
After aggregating support into a final space E(z,y, d),
we can compute a disparity function

d(z,) = arg min B(z,y,d)

that represents the matches as offsets to the points in
the right image.

The standard sum-of-squared-differences algorithm
(SSD) uses square windows for aggregation. As men-
tioned before, choosing the right window size involves
a trade-off between a noisy disparity map and blur-
ring of depth boundaries. We will illustrate this using
two synthetic image pairs. Both pairs have the same
disparity pattern: a central square floating in front of
a background with constant disparity.

Figure 1 shows the two image pairs and the dis-
parity pattern. The ramp pair is similar to the image
pair in Fig. 5in [10] and is based on a linear intensity
ramp in the direction of the baseline. Gaussian noise
has been added to each image independently. The rds
pair is based on a binary random dot pattern using
two gray levels with equal probability.

The two image pairs are quite different. The ramp
pair has no local texture variation and constant gra-
dients everywhere, except for the boundaries of the
central square. The two images can only be matched
by comparing absolute intensities, and any algorithm
based on band-pass filtered intensities or gradients will
fail (as will the human visual system). The rds pair,
on the other hand, has strong local texture variation,
but 1s highly ambiguous since pixels not in correspon-
dence still have a 50% chance of matching.

Figure 2 shows the performance of the simple SSD
algorithm on these two image pairs using two differ-
ent window sizes, w = 3 and w = 7. As can be seen,
the bigger window size yields a disparity map with
less noise, but results in an overall blurring of the fea-
tures. The effect on the two image pairs is quite dif-
ferent: in the ramp pair, the disparities are smoothed
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Figure 2: Performance of the SSD algorithm using
square windows with sizes w = 3 and w = 7.

across the boundaries, while in the rds pair only the
outlines of the square are blurred, i.e., the corners are
rounded, while the two disparity levels of foreground
and background are clearly recovered. The latter ef-
fect, smoothing of object boundaries, is more common
in real images pairs than the smoothing of disparities.
The smoothing of disparities we observed in the ramp
pair is a direct result of the ramp intensity pattern
and the small local variations in intensity.

Since the blurring of outlines is caused by support
regions that span object boundaries, a possible solu-



tion to the problem is to use non-uniform and adaptive
support regions. Kanade and Okutomi [10] have pro-
posed adaptive windows, square windows that extend
by different amounts in each of four directions. The
optimal window size is found by a greedy algorithm
(gradient descent) based on an estimate of dispar-
ity uncertainty in the current window. In this paper
we propose a different approach: aggregating support
with a non-uniform diffusion process.

3 Aggregating support by diffusion
Instead of using a fixed window, support can also
be aggregated with a weighted support function such
as a Gaussian. A convolution with a Gaussian can be
implemented using local iterative diffusion [17] defined

by the equation

OF  _,
o = V'E.

In a discrete system, this yields the update rule

E(i, j,d) « (1=ANE(i, j,d) + XY E(i+k, j+1,d),
(k,1)EN,

where My = {(-1,0),(1,0),(0,—1),(0,1)} is the lo-
cal neighborhood containing the four direct neighbors,
and A controls the speed of the diffusion. A value
of A < 0.25 is needed to ensure convergence; we use
A = 0.15 for the experiments reported in this paper.

Aggregation using a finite number of simple diffu-
sion steps yields fairly similar results to using square
windows. Advantages include the rotational symme-
try of the support kernel and the fact that points fur-
ther away have gradually less influence. The problem
of boundary blurring still exists, however.

3.1 Membrane model

A problem with simple diffusion is that the size of
the support region increases with the number of iter-
ations. While the diffusion would eventually converge
to a uniform support covering the whole image, we are
interested in an intermediate time step in which the
diffusion has only progressed to a certain amount. We
can change this behavior by adding a term to the diffu-
sion equation that measures the amount each current
value has diverged from its original value, yielding the
membrane equation [17]

OF
— =V?E + B(E, — E).
ot

The discrete update rule is

+A[BEo(i,j,d)+ > E(i+k,j+1d)].
(k,1)EN,

The f-term ensures that the diffusion converges to a
stable solution not too far from the original values.

ramp

rds

Figure 3: Performance of the membrane model on the
ramp and rds image pairs.

Unless noted otherwise, we use § = 0.5 in the results
reported in this paper. A closed-from solution for the
support function can easily be derived using Fourier
analysis [15].

Figure 3 shows the results for accumulating support
using the membrane model for the ramp and rds pairs.
The number of diffusion iterations is n = 10. Using
the membrane model alleviates the contour blurring
problem to some extent, since the f-term “ties” the
center of each support region to its original value. For
very noisy images, however, 3 needs to be chosen quite
small to enable enough smoothing for stable matching,
making the process more similar to regular diffusion.

3.2 Diffusion with local stopping criteria

A different strategy for preventing both boundary
blurring and diffusion to uniformity is to locally stop
the diffusion process depending on the distribution of
values in each disparity column. To do this, we asso-
ciate a measure of certainty C(i, j) with each location.
Intuitively, this measure should reflect how “clear” a
minimum there is among the values FE(3, j, d) for all
d. Given such a measure C, we can aggregate support
using non-uniform diffusion:

For each (i, j), compute certainties C' and C’
before and after a single iteration of diffusion.
If C > C’, do not diffuse, i.e., restore the old
values E(1, j, d) for all d.

The idea is that diffusion takes place only at loca-
tions of ambiguous matches. Also, certainties never
decrease, thus guarantying convergence.



We have experimented with several different cer-
tainty measures. In this paper we will discuss two
measures, the winner margin, and the entropy. The
winner margin Cp, is the normalized difference be-
tween the minimum F,;, and the second minimum
FEnin 2 1n a disparity column:

Emin2 Emin
2 a Bl d)

The second measure C, is the negative entropy of the
probability distribution in the disparity column. We
convert to probabilities by taking the inverse exponent
and normalizing:

Cm (i, j) =

Zp ) log p(d

with p(d) = (#.5.4) / Yoae (1.4.4") - We will develop
the idea of convertmg to probablhtles further in the
next section.

All three methods (local stopping with C, and C),
and the membrane model) yield fairly similar dispar-
ity maps [15]. In Section 5 we numerically analyze
their respective performance based on errors in the
computed disparities.

4 A Bayesian model of stereo matching

In this section, we develop a Bayesian model for
stereo matching that includes both a measurement
model corresponding to the matching criterion and
a prior Markov Random Field model corresponding
to the aggregation function. Our model uses robust
(non-Gaussian) statistics to handle gross errors and
discontinuities in the surface. We also develop a novel
approximation algorithm that results in a non-linear
diffusion process, and show how this produces better
results than standard diffusion.

As before, stereo reconstruction is specified as the
estimation of a discrete disparity field d; ; = d(z;, y;)
given two input images I, (z,y) and Ir(z,y). Using a
Bayesian framework, we first specify a model of image
formation, and then derive estimation algorithms from
this model.

The Bayesian model of stereo image formation con-
sists of two parts. The first part, a prior model for
the disparity surface, uses a traditional Markov Ran-
dom Field (MRF) to encode preferences for smooth
surfaces [7]. Tt is specified as a Gibbs distribution pp,
the exponential of a potential function Ep:

pr(d) = o exp (—Ep(d).

where d is the vector of all disparities d; ; and Zp is
a normalizing factor. The potential function itself is

the sum of clique potentials which only involve neigh-
boring sites in the field. In this paper, we study only
first order fields, where

=Y rp(dis1 -
i

(see [16] for generalizations to higher order fields).
When p(z) is a quadratic, p(z) = 2%, the field is a
Gauss-MRF, and corresponds in a probabilistic sense
to a first order regularized (membrane) surface model.
When p(z) is a unit impulse, p(z) = 1 —§(x), it corre-
sponds to a MRF that favors fronto-parallel surfaces
[7]. In between these two extremes are functions de-
rived from robust statistics [9], which behave much like
surface models with discontinuities [3, 6, 2]. A wide
variety of robust penalty functions are possible. In
this paper, we use a contaminated Gaussian model,

2’/20%) +ep) .

di ;) + pp(dij+1 — dij)

pp(z) = —log ((1 —ep)exp(—

The second part of our Bayesian model is the data
or measurement model which accounts for differences
in intensities between left and right images. This
model assumes independent, identically distributed
measurement errors,

v (I, Irld) = HPM(IL(IZ' +dij,y;) — Ir(zs,y5)).
i,

Traditional stereo matching methods use either
a squared intensity error metric (Gaussian noise),
pm(z) = logpar(z) = 2%, or an exact binary matching
criterion par(z) = 1 — §(z). In this paper, we again
use a contaminated Gaussian model,

pu(z) = —log ((1 —€em) exp(—r2/20ﬁ4) + eM) ,

to model both Gaussian noise and possible outliers due
to occlusions or effects such as specularities.

The posterior distribution, p(d|/L, Ir) can be de-
rived using Bayes’ rule,

p(d|Ir, Ir) o pp(d)pm (I, Ir|d).

As is often the case, it is more convenient to study the
negative log probability distribution

E(d) = —logp(d|IL, Ir) (1)
> op(digrj — dij) + pp(dijp — dij)
id

+ ZpM(IL(fEi +di j,y;) — Ir(zi, y5))-
iJ
While p(d|IL, Ir) specifies a complete distribution,

usually only a single optimal estimate of d(z, y) is de-
sired. The most commonly studied estimate is the



Mazimum A Posteriori (MAP) estimate, which is
equivalent to minimizing the energy given in (1).

Two popular techniques for minimizing equations
like (1) are the Gibbs Sampler [7, 1] and mean field
theory [6]. The Gibbs Sampler and its variants can
produce good solutions, but at the cost of long com-
putation times. Mean field techniques are not very
good at modeling ambiguous estimates, such as mul-
tiple potential matches at each pixel.

4.1 Explicit local distribution model

Instead of using either of these two traditional ap-
proaches, we will develop a novel estimation algorithm
based on modeling the probability distribution of d; ;
at each site. To do this, we associate a scalar value
between 0 and 1 with each possible discrete value of d
at each pixel (7, ), and require that ), p(i, j, d) = 1.
Our representation is therefore the same as that used
by diffusion-based algorithms, i.e., we explicitly model
all possible disparities at each pixel.

To initialize our algorithm, we calculate the prob-
ability distribution for each pixel (i,j) based on the
intensity errors between matching pixels, i.e.,

po(i, j, d) X exXp (_EO(Za j’ d)) )

where

is the matching cost of pixel (7, j) at disparity d.

Assuming (sub-optimally) independent distribu-
tions of adjacent disparity columns, we arrive at the
update formula'

E(i,j.d) < Eoli,j,d)+
(k,1)EN,

log[— > exp (—pp(d'—d) — E(i+k, j+1,d"))].
7

For notational and computational convenience, we
will introduce a few more additional quantities. The
smoothed probability distribution

ps(i,j,d)=> wp(d —d)p(i,j,d) (2)

is simply the current probability distribution p(3, j, d)
after it has been convolved wertically (in disparity)
with the smoothing kernel wp(d) o e=?P(d with
> qwp(d) = 1. Tt has a corresponding smoothed en-

ergy
3)

Due to space constraints we have to omit the derivation,
which can be found in [15].

Es(i,j,d) = —logps(i, j,d).
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Finally, the update rule can be written as a pair of
equations

E(i,j,d) « Eo(i,j,d)+ Y Es(i+k,j+1,d), (4)
(k,1)ENS
L. e_E(ivjvd)
p(i,j,d) W- ()
In practice, since the values of E(i, j,d) are being
updated simultaneously at all pixels and disparity, we
use a modified version of (4),

E(i,j,d) « Fo(i,7,d)

+ulEs(i,j,d)+ Y Es(i+k,j+1,d)],
(k,1)ENS

(6)

i.e., we weight the neighboring values less (we use p =
0.5) and include the current energy estimate.

If we interpret the above equations as a four-step
algorithm for iteratively computing the best stereo
matches, we see that they are a special instance of
a non-linear diffusion process. The smoothing step
in (2-3) blurs the current disparity probabilities ver-
tically along a column, thereby enabling different
nearby disparities to support each other (depending
on the size of op). Tt also adds a small amount to each
probability (ep), which in effect limits the largest pos-
sible value that £'s can take and thus limits the effect
of disparity discontinuities.

The update step (6) is identical to a regular diffu-
sion step with f-terms (membrane model). However,
the probability re-normalization step ensures that the
energies represent meaningful log probabilities. The
robust form of the Ejy function also ensures that bad
matches have only limited effects, thus allowing for
occlusions or other non-modeled errors to occur.

For the above algorithm to work well, the various
parameters {op, cp, oar, €3 } must be set to appropri-
ate values. oas and €7 are based on the expected noise
in the image sensor, i.e., o7 should be proportional to
the regular image noise, while ey should be the prob-
ability of gross errors or occlusions (say 1-10%). The
choice of op depends on the class of disparity surfaces
which may be expected, i.e., a small op favors fronto-
parallel surfaces. For the experiments presented in
this paper, we set op = 0.1 and ep = 0.01.

Figure 4 shows the results of our probabilistic ag-
gregation technique applied to the ramp and rds im-
ages. We use a different o3 for the two image pairs:
oy = 2 for ramp; opr = 20 for rds, to compensate
for the different signal strengths of the two pairs. The
other parameters are the same for both image pairs:
ey = 0.1,0p = 0.1,ep = 0.01. The number of diffu-
sion iterations is n = 10.
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Figure 4: Performance of the probabilistic model on
the ramp and rds image pairs.

5 Experimental results

In this section we numerically evaluate the perfor-
mance of the different algorithms on synthetic images.
We also show results for real image data.

For our experiments we use five synthetic image
pairs, including the two pairs from Figure 1. The
additional pairs are based on combinations of a new
disparity pattern bars consisting of two rectangular
regions with two different disparities, and a new in-
tensity pattern, real, which is taken from a real image
depicting ground covered with grass [15].

We compared the following algorithms: SSD, diffu-
sion using the membrane model, diffusion with local
stopping, and diffusion using the probabilistic model.
For each parameter setting, we ran each algorithm on
a test set of 40 images (the 5 image pairs with 8 dif-
ferent levels of additive Gaussian noise). We tried
more than 70 different parameter settings, resulting
in about 3000 experiments. In each experiment, we
compared the computed disparities with the true dis-
parities (ignoring the occluded regions), and collected
three different error statistics.

First we analyzed the error statistics for each
method separately to gain understanding of the effect
of the different parameters. Then we chose the best
parameters for each method, and compared the differ-
ent methods with each other. In this paper we only
report a subset of our results based on the root-mean-
square (RMS) disparity error. See the long version of
this paper for a more detailed analysis [15].

SSD, which we include for comparison, has only one
parameter: the size of the support region. The same
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holds for simple diffusion, where the size of the support
region is controlled by the number of iterations. Not
surprisingly, higher noise levels require bigger window
sizes. The best window size can also depend on the
image.

The membrane model behaves similarly to regular
diffusion with a fixed number of iterations. For small
noise levels, a value of 3 between 1/3 and 1 usually
yields smaller errors than regular diffusion, but not
always. Also, as mentioned before, for high noise lev-
els, B needs to be chosen quite small to enable enough
smoothing for stable matching.

In analyzing regular diffusion with local stopping
criteria, we found that the certainty measure is criti-
cal. In our experiments, the winner margin C,, almost
always outperformed the measure based on entropy
C.. A problem with our definition of local stopping is
that an initial wrong but “certain” match can survive.
There 1s clearly a potential for both better certainty
measures and different stopping criteria.

The probabilistic model, which performed by far
the best, also has the most parameters. We found,
however, that many parameters have only small ef-
fects and can be set to default values, including ey =
0.1,ep = 0.01, and ¢ = 0.5. As expected, a small
op worked best for our test images composed from
fronto-parallel surfaces. For real images, we found
that op needs to be chosen slightly higher. The most
important parameter is oas, which should reflect the
strength of the image signal. We used three different
values for the three different textures of our test im-
ages. Finally, the number of iterations is less critical,
since the method seems to converge relatively fast to
a stable solution. Higher numbers of iterations are
necessary for images containing regions of uniform in-
tensity, such as the real images discussed below.

For direct comparison of the methods, Figure 5
shows the RMS disparity error versus the noise level
for three image pairs. We compare SSD with a win-
dow size of b, the membrane model with g = 0.5,
diffusion with local stopping based on winner margin
Cim, and the probabilistic model with ep = 0.01,0p =
0.1,epy = 0.1, and oy = 2,8, 20, for ramp, real, and
rds textures respectively. The number of iterations is
10 for all methods.

The probabilistic model clearly beats the three
other methods. For small noise levels, the occlusion
boundaries are recovered almost perfectly. Note that
the algorithm recovers the “correct” disparity pat-
tern, even though the notion of true disparities is not
well defined for ambiguous images such as random dot
stereograms.

We also tested our algorithms on real images. We
include results of the probabilistic method on images
from the SRI’s tree sequence and CMU’s town se-
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Figure 5: RMS error of the computed disparities ver-
sus the standard deviation of image noise for three
synthetic image pairs. The error at occluded points is
not included.

quence. We used multiple baseline stereo based on
five images to initialize the disparity space with the
sum of four (appropriately scaled) similarity measures
[11]. Figure 6 shows the disparity maps computed by
the probabilistic algorithm after 50 iterations, using
the following parameters: op = 0.4,ep = 0.01, 0y =
5,exm = 0.1. Note that we use a bigger op than before
to account for slanted surfaces.
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6 Discussion

As we have shown, linear and non-linear diffusion
algorithms are an attractive alternative to the adap-
tive windows introduced by Kanade and Okutomi [10].
In its simplest form, the membrane algorithm sim-
ply requires the iterative summation of neighboring
matching costs, with an additional term thrown in to
prevent the support region from growing indefinitely.
The increased weighting of the central pixel relative to
the periphery is sufficient to counteract many of the
artifacts introduced by the squared summing window
used in SSD. When combined with a local stopping
criterion, the resulting non-linear diffusion process has
an adaptive support behavior similar to the variable
window size algorithm. The inclusion of additional
non-linearities in the Bayesian diffusion algorithm im-
proves the performance even more.

In addition to their simplicity and computational
efficiency, our non-linear diffusion algorithms can also
handle stereograms with more ambiguity than the
adaptive window SSD algorithm. Kanade and Oku-
tomi’s algorithm is based on locally adjusting the sub-
pixel disparity estimate simultaneously with growing
the window size. This presupposes that the algorithm
is somehow initialized in the vicinity of the true dispar-
ity. This is achieved in their synthetic image sequences
by using small disparities, and in their real sequences
by using a multi-frame version of the basic SSD algo-
rithm [11]. Image pairs with rapidly varying textures
and many potential matches such as the random-dot
stereograms used in our experiments could not be han-
dled by their current algorithm.

In future work, we plan to study better local stop-
ping criteria based on improved certainty measures.
We would also like to investigate multi-resolution ver-
sions of our diffusion algorithms to help fill in regions
which have few features to match.

7 Conclusions

In this paper, we have demonstrated that diffusion-
based aggregation of support is a useful alternative to
both traditional area-based correlation and to more
recent adaptive window size-based techniques. Our
algorithms are simple to implement and computation-
ally efficient, and result in better quality estimates,
especially near discontinuities in the disparity surface.
The addition of local termination conditions to the
basic diffusion process results in a behavior similar to
that of adaptively sized windows. Furthermore, our
novel non-linear diffusion algorithm derived from a
Bayesian model of stereo matching results in markedly
improved performance. We believe that further study
of the basic support and aggregation methods in stereo
matching is central to developing algorithms with im-
proved performance over a wide range of imagery.
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