
I-COLLIDE: An Interactive and Exact Collision Detection System
for Large-Scale Environments

Jonathan D. Cohen Ming C. Lin * Dinesh Manocha Madhav Ponamgi
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

{cohenj,lin,manocha,ponamgi}Qcs.unc.edu

ABSTRACT:
We present an exact and interactive collision detection
system, I-COLLIDE, for large-scale environments. Such
environments are characterized by the number of objects
undergoing rigid motion and the complexity of the mod-
els. The algorithm does not assume the objects’ motions
can be expressed as a closed form function of time. The
collision detection system is general and can be easily in-
terfaced with a variety of applications. The algorithm
uses a two-level approach based on pruning multiple-
object pairs using bounding boxes and performing exact
collision detection between selected pairs of polyhedral
models. We demonstrate the performance of the system
in walkthrough and simulation environments consisting
of a large number of moving objects. In particular, the
system takes less than l/20 of a second to determine all
the collisions and contacts in an environment consisting
of more than a 1000 moving polytopes, each consisting of
more than 50 faces on an HP-9000/750.

1 INTRODUCTION
Collision detection is a fundamental problem in computer
animation, physically-based modeling, computer simu-
lated environments and robotics. In these applications,
an object’s motion is constrained by collisions with other
objects and by other dynamic constraints. The prob-
lem has been well studied in the literature. However, no
good general collision detection algorithms and systems
are known for interactive large-scale environments.

A large-scale virtual environment, like a walkthrough,
creates a computer-generated world, filled with real and
virtual objects. Such an environment should give the user
a feeling of presence, which includes making the images of
both the user and the surrounding objects feel solid. For
example, the objects should not pass through each other,
and things should move as expected when pushed, pulled

*Currently at NC A k T State University, Greensboro

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
+3Ct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice /s given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
(0 1995 ACM O-69791 -736-7l95lOOO4...$3.50

or grasped. Such actions require accurate collision detec-
tion. However, there may be hundreds, even thousands
of objects in the virtual world, so a brute-force approach
that tests all possible pairs for collisions is not acceptable.
Efficiency is critical in a virtual environment, otherwise
its interactive nature is lost [24]. A fast and interactive
colIision detection algorithm is a fundamental component
of a complex virtual environment.

The objective of collision detection is to report all geo-
metric contacts between objects. If we know the positions
and orientations of the objects in advance, we can solve
collision detection as a function of time. However, this
is not the case in virtual environments or other interac-
tive applications. In fact, in a walkthrough environment,
we usually do not have any information regarding the
maximum velocity or acceleration, because the user may
move with abrupt changes in direction and speed. Due to
these unconstrained variables, collision detection is cur-
rently considered to be one of the major bottlenecks in
building interactive simulated environments [20].

Main Contribution: We present a collision de-
tection algorithm and system for interactive and exact
collision detection in complex environments. In contrast
to the previous work, we show that accurate, interac-
tive performance can be attained in most environments if
we use coherence to speed up pairwise interference tests
and to reduce the actual number of these tests we per-
form. We are able to successfully trim the O(n2) pos-
sible interactions of n simultaneously moving objects to
O(n + m) where m is the number of objects very clolre
to each other. In particular, two objects are very close,
if their axis-aligned bounding boxes overlap. Our ap-
proach is flexible enough to handle dense environments
without making assumptions about object velocity or ac-
celeration. The system has been successfully applied to
architectural walkthroughs and simulated environments
and works well in practice.

The rest of the paper is organized as follows. In Sec-
tion 2, we review some of the previous work in collision
detection. Section 3 defines the concept of coherence and
describes an exact pairwise collision detection algorithm
which applies it. We describe our algorithm for collision
detection between multiple objects in Section 4 and dis-
cuss its implementation in Sections 5 and 6. Section 7
presents our experimental results on walkthrough envi-
ronments and simulations.

189

2 PREVIOUS WORK

The problem of collision detection has been extensively
studied in robotics, computational geometry, and com-
puter graphics. The goal in robotics has been the
planning of collision-free paths between obstacles [15].
This differs from virtual environments and physically-
based :simulations, where the motion is subject to dy-
namic constraints or external forces and cannot typi-
cally be expressed as a closed form function of time
[l, 3, 11, 18, 20, 211.

At the same time, the emphasis in the computational
geometry has been on theoretically efficient intersection
detection algorithms [32]. Most of them are restricted to
a static inst.ance of the problem and are non-trivial to
implement. For convex 3-polytopes ’ linear time algo-
rithms based on linear programming and tracking closest
points [lo] have been proposed. More recently, temporal
and geometric coherence have been used to devise algo-
rithms based on checking local features of pairs of convex
3-polytopes [3, 171. Alonso et al.[l] use bounding boxes
and spatial partitioning to test all O(n’) pairs of arbi-
trary polyhedral objects.

Different methods have been proposed to overcome the
bottleneck of O(n’) pairwise tests in an environment of
n bodies. The simplest of these are based on spatial sub-
division The space is divided into cells of equal vol-
ume, and at each instance the objects are assigned to one
or more cells. Collisions are checked between all object
pairs belonging to a particular cell. This approach works
well for :sparse environments in which the objects are uni-
formly distributed through the space. Another approach
operates directly on four-dimensional volumes swept out
by object motion over time [4, 141.

None of these algorithms adequately address the issue
of collision detection in a virtual environment which re-
quires p,erformance at interactive rates for thousands of
pair-wise tests. Hubbard has proposed a solution to ad-
dress this problem by trading accuracy for speed [14].
In an early extension of their work, Lin and Canny [16]
proposed a scheduling scheme to handle multiple moving
objects. Dworkin and Zeltzer extended this work for a
sparse model [7].

3 BACKGROUND

In this section, we highlight the importance of coherence
in dynamic environments. We briefly review the algo-
rithm for exact pairwise collision detection and present
our mult.i-body collision detection scheme, both of which
exploit coherence to achieve efficiency.

3.1 Temporal and Geometric Coherence

Temporal coherence is the property that the application
state does not change significantly between time steps,
or frames. The objects move only slightly from frame
t,o frame. This slight movement of the objects trans-
lates into geometric coherence, because their geometry,
defined by the vertex coordinates, changes minimally be-
tween frames. The underlying assumptionis that the time

‘We shall refer to a bounded d-dimensional polyhedral set as
a convex d-polytope, or briefly polytope. In common parlance,
“polyhedron” is used to denote the union of the boundary and of
the interior in E3.

steps are small enorrgh that the objects to do not travel
large distances between frames.

3.2 Pairwise Collision Detection for Convex Polytopes

We briefly review the Lin-Canny collision detection algo-
rithm which tracks closest points between pairs of convex
polytopes [IS, 171. This algorithm is used at the lowest
level of collision detection to determine the exact contact
stat.us betwe.en convex polytopes. The method maintains
a pair of closest features for each convex polyt,ope pair
and calculates the Euclidean distance between the fea-
tures to detect collisions. This approach can be used in
a static environment, but is especially well-suited for dy-
namic environments in which objects move in a sequence
of small, discrete steps.

The method takes advantage of coherence: the closest
features change infrequently as the polyt.opes move along
finely discretized paths. The algorithm runs in ezpectd
constant time if the polytopes are not moving swiftl!f.
Even when a closest feature pair is changing rapidly, the
algorithm ta:kes only slightly longer (the running time
is proportional to the number of feature pairs traversed,
which is a function of the relative motion the polytopes
undergo). The method for finding closest feature pairs is
based on Voronoi regions. The algorithm starts with .a
candidate pair of features, one from each polytope, and
checks whether the closest points he on these features.
Since the polytopes and their faces are convex, this is a
local test involving only the neighboring features of the
current candidate features. If either feature fails the test,
the algorithm. steps to a neighboring feature of one or
both candidates, and tries again. With some simple pre-
processing, the algorithm can guarantee that every fea-
ture has a constant number of neighboring features.

3.3 Penetration Detection for Convex Polytopes

The core of the collision detection algorithm is built us
ing the properties of Voronoi regions of convex polytopes.
The Voronoi regions form a partition of space outside the
polytope. When polytopes interpenetrate, some features
may not fall into any Voronoi regions. This can at times
lead to cycling of feature pairs. To circumvent this prob-
lem, we partition the interior space of the convex poly-
topes. The partitioning does not have to form the exact
internal Voronoi regions, because we are not interested in
knowing the closest features between two interpenetrat-
ing polytopes, but only detecting such a case. So instead
we use pseudo-Voronoi regions, obtained by joining each
vertex of the polytope with the centroid of the polytope
Pll.

Given a partition of the exterior and the interior of the
polytope, we walk from the external Voronoi regions into
the pseudo-internal Voronoi regions when necessary. If
either of the closest features falls into a pseudo-Voronoi
region at the end of the walk, we know t,he 0bject.s
are interpenetrating. Ensuring convergence as we walk
through pseudo-internal Voronoi regions requires special
case analysis and will be omitted here.

3.4 Extension to Non-Convex Objects

We extend the collision detection algorithm for convex
polytopes to handle non-convex objects, such as articu-

190

lated bodies, by using a hierarchical representation. In
the hierarchical representation, the internal nodes can be
convex or non-convex sub-parts, but all the leaf nodes are
convex polytopes or features [21].

Beginning with the leaf nodes, we construct either a
convex hull or other bounding volume and work up the
tree, level by level, to the root. The bounding volume
associated with each node is the bounding volume of the
union of its children; the root’s bounding volume encloses
the whole hierarchy. For instance, a hand may have indi-
vidual joints in the leaves, fingers in the internal nodes,
and the entire hand in the root.

We test for collision between a pair of these hierarchical
trees recursively. The collision detection algorithm first
tests for collision between the two parent nodes. If there
is no collision between the two parents, the algorithm
returns the closest feature pair of their bounding volumes.
If there is a collision, the algorithm expands their children
and recursively proceeds down the tree to determine if a
collision actually occurs. More details are given in [21].

4 MULTIPLE-OBJECT COLLISION DETECTION

Large-scale environments consist of stationary as well as
moving objects. Let there be N moving objects and M
stationary objects. Each of the N moving objects can
collide with the other moving objects, as well as with the

stationary ones. Keeping track of N

(>
2 + NM pairs

of objects at every time step can become t.ime consum-
ing as N and M get large. To achieve interactive rates,
we must reduce this number before performing pairwise
collision tests. The overall architecture of the multiple
object collision detection algorithm is shown in Fig. 1.

Sorting is the key to our pruning approach. Each ob-
ject is surrounded by a 3-dimensional bounding volume.
We sort these bounding volumes in 3-space to determine
which pairs are overlapping. We only need to perform
exact pairwise collision tests on these remaining pairs.

However, it is not intuitively obvious how to sort ob-
jects in 3-space. We use a dimension reduction approach.
If two bodies collide in a 3-dimensional space, their or-
thogonal projections onto the zy, yr, and zz-planes and
2, y, and z-axes must overlap. Based on this observation,
we choose axis-aligned bounding boxes as our bounding
volumes. We efficiently project these bounding boxes
onto a lower dimension, and perform our sort on these
lower-dimensional structures.

This approach is quite different from the typical space
partitioning approaches used to reduce the number of
pairs. A space partitioning approach puts considerable
effort into choosing good partition sizes. But there is no
partition size that prunes out object pairs as ideally as
testing for bounding box overlaps. Partitioning schemes
may work well for environments where N is small com-
pared to M, but object sorting works well whether N is
small or large.

4.1 Bounding Volumes

Many collision detection algorithms have used bounding
boxes, spheres, ellipses, etc. to rule out collisions between
objects which are far apart. We use bounding box over-
laps to trigger the ezact collision detection algorithm.

Architecture for Multi-body
Collision Detection

object tnnsfomutioru ovc~l~pplng palm

ODD
Pruning

Multi-body Pairs

mllldln~
pain

Figure 1: Architecture for Multiple Body Collision De-
tection Algorithm

We have considered two types of axis-aligned bound-
ing boxes: fixed-size bounding cubes (fixed cubes) and
dynamically-resized rectangular bounding boxes (dy-
namic boxes).

l Fixed-Size Bounding Cubes:
We compute the size of the fixed cube to be large enough
to contain the object at any orientation. We define this
axis-aligned cube by a center and a radius. Fixed cubes
are easy to recompute as objects move, making them well-
suited to dynamic environments. If an object is nearly
spherical the fixed cube fits it well.

As preprocessing steps we calculate the center and ra-
dius of the fixed cube. At each time step as the object
moves, we recompute the cube as follows:

1. Transform the center using one vector-matrix multi-
plication.

2. Compute the minimum and maximum x, y, and I-
coordinates by subtracting and adding the radius
from the coordinates of the center.

Step 1 involves only one vector-matrix multiplication.
Step 2 needs six arithmetic operations (3 additions and 3
subtractions).

s Dynamically Rectangular Bounding Boxes:
We compute the size of the rectangular bounding box to
be the tightest axis-aligned box containing the object at
a particular orientation. It is defined by its minimum
and maximum x, y, and z-coordinates (for a convex ob-
ject, these must correspond to coordinates of up to 6 of
its vertices). As an object moves, we must recompute its
minima and maxima, taking into account the object’s ori-
entation. For oblong objects rectangular boxes fit better
than cubes, resulting in fewer overlaps. This is advanta-
geous as long as few of the objects are moving, as in a

191

Lb
, ., I et b2 be, e3 b4 e4

Figure 2: Bounding Box Behavior

waIkt.hrough environment. In such an environment, the
savings gained by the reduced number of pairwise colli-
sion detection tests outweigh the cost of computing the
dynamically-resized boxes.

As a precomputation, we compute each object’s ini-
tial minima and maxima along each axis. It is assumed
that the objects are convex. For non-convex polyhedral
models, the following algorithm is applied to their convex
hulls. As an object moves, we recompute its minima and
maxima at each time step as follows:

1. Check to see if the current minimum (or maximum)
vertex for the 2, y, or z-coordinate still has the small-
est (or largest) value in comparison to its neighboring
vertices. If so we are finished.

2. Update the vertex for that extremum by replacing
it with the neighboring vertex with the smallest (or
largest) value of all neighboring vertices. Repeat the
entire process as necessary.

This algorit.hm recomputes the bounding boxes at an ex-
pected constant rate. Once again, we are exploiting the
temporal and geometric coherence, in addition to the lo-
cality of convex polytopes.

We do not transform all the vertices as the objects un-
dergo motion. As we are updating the bounding boxes
new positions are computed for current vertices using
matrix-vector multiplications. We can optimize this ap-
proach by realizing that we are only interested in one
coordina.te value of each extremal vertex, say the t coor-
dinate while updating the minimum or maximum value
along the x-axis. Therefore, there is no need to transform
the other than coordinates in order to compare neigh-
boring vertices. This reduces the number of arithmetic
operations by two-thirds.

4.2 One-Dimensional Sweep and Prune

The one-dimensional sweep and prune algorithm begins
by projecting each three-dimensional bounding box onto
the Z, y! and t axes. Because the bounding boxes are
axis-aligned, projecting them onto the coordinate axes re-
sults in intervals (see Fig. 2). We are interested in over-
laps among these intervals, because a pair of bounding
boxes can overlap if and only if their intervals overlap in
all three dimensions.

We construct three lists, one for each dimension. Each
list contains the values of the endpoints of the intervals
corresponding to that dimension. By sorting these l&s,
we can determine which intervals overlap. In the general
case, such a sort would take O(n log n) time, where n is
the number of objects. We can reduce this time bound 'by
keeping the sorted lists from the previous frame, changing
only the values of the interval endpoints. In environments
where the objects make relatively small movements E,e-
tween frames, the lists will be nearly sorted, so we can
sort in expected O(n) time, as shown in [19, 31. Insertion
sort works well for previously sorted lists.

In addition to sorting, we need to keep track of changes
in overlap status of interval pairs (i.e. from overlapping
in the last time step to non-overlapping in the current
time step, and vice-versa). This can be done in O(n +
e, + ey + e,) time, where e,, e,,and e, are the number
of exchanges along the x, y, and r-axes. This also runs in
expected linear time due to coherence, but in the worst
case e,,ey,and e, can each be O(n’) with an extremely
small constant.

Our method is suitable for dynamic environmem;s
where coherence is preserved. In computational geom-
etry literature several algorithms exist that solve the
static version of determining 3-D bounding box overlaps
in O(n log’ n + s) time, where s is the number of pairwise
overlaps [12, 131. We have reduced this to O(n + s) b,y
using coherence.

4.3 Two-Dimensional Intersection Tests

The two-dimensional intersection algorithm begins by
projecting each three-dimensional axis-aligned bounding
box onto any two of the x-y, X-Z, and y-z planes. Eac.h
of these projections is a rectangle in 2-space. Typically
there are fewer overlaps of these 2-D rectangles than of
the 1-D intervals used by the sweep and prune technique.
This results in fewer swaps as the objects move. In sit-
uations where the projections onto one-dimension result
in densely clustered intervals, the two-dimensional tech-
nique is more efficient. The interval tree is a common
data structure for performing such two-dimensional range
queries [22].

Each query of an interval intersection takes O(log n+k)
time where k is the number of reported intersections and
n is the number of intervals. Therefore, reporting inter-
sections among n rectangles can be done in O(n log n+Zi)
where K is the total number of intersecting rectangles [s].

4.4 Alternatives to Dimension Reduction

There are many different methods for reducing the num-
ber of pairwise tests, such as binary space partitioning
(BSP) trees [1:3], octrees, etc.

Several practical and efficient algorithms are based on
uniform space division. Divide space into unit cells (or
volumes) and place each object in some cell(s). To check
for collisions, examine the cell(s) occupied by each object
to verify if the cell(s) is(are) shared by other objects.
Choosing a near-optimal cell size is difficult, and failing
to do sb results in large memory usage and computational
inefficiency.

192

5 IMPLEMENTATION

In this section we describe the implementat.ion details of
I-COLLIDE based on the Sweep and Prune algorithm,
the exact collision detection algorithm, the multi-body
simulation, and their applications to walkthrough and
simulations.

5.1 Sweep and Prune

As described earlier, the Sweep and Prune algorithm re-
duces the number of pairwise collision tests by eliminating
polytope pairs that are far apart. It involves three steps:
calculating bounding boxes, sorting the minimum and
maximum coordinates of the bounding boxes as the al-
gorithm sweeps through each list, and determining which
bounding boxes overlap. As it, t,urns out, we do the sec-
ond and third steps simultaneously.

Each bounding box consists of a minimum and a max-
imum coordinate value for each dimension: z, y, and z.
These minima and maxima are maintained in three sep-
arate lists, one for each dimension. We sort each list of
coordinate values using insertion sort, while maintaining
an overlap status for each bounding box pair. The over-
lap status consists of a boolean flag for each dimension.
Whenever all three of these flags are set, the bounding
boxes of the polytope pair overlap. These flags are only
modified when insertion sort performs a swap. We de-
cide whether or not to toggle a flag based on whether
the coordinate values both refer to bounding box min-
ima, both refer to bounding box maxima, or one refers to
a bounding box minimum and the other a maximum.

When a flag is toggled, the overlap status indicates one
of three situations:

All three dimensions of this bounding box pair now
overlap. In this case, we add the corresponding poly-
tope pair to a list of active pairs.

This bounding box pair overlapped at the previous
time step. In this case, we remove the corresponding
polytope pair from the active list.

This bounding box pair did not overlap at the pre-
vious time step and does not overlap at the current
time step. In this case, we do nothing.

When sorting is completed for this time step, the active
pair list contains all the polytope pairs whose bounding
boxes currently overlap. We pass this active pair list to
the exact collision detection routine to find t,he closest
features of all these polytope pairs and determine which,
if any, of them are colliding.

5.2 Exact collision detection

The collision detection routine processes each polytope
pair in the active list. The first time a polytope pair is
considered, we select a random feature from each poly-
tope; otherwise, we use the previous closest feature pair
as a starting point. This previous closest feature pair
may not be a good guess when the polytope pair has just
become active. Dworkin and Zeltzer [7] suggest precom-
puting a lookup table for each polytope to help find better
starting guesses.

5.3 Multi-body Simulation

The multi-body simulation is an application we developed
to test the I-COLLIDE system. It represents a general,
non-restrict,ed environment in which objects move in an
arbitrary fashion resulting in collisions with simple im-
pulse responses.

While we can load any convex polytopes into the sim-
ulation, we typically use those generated by the tessella-
tion of random points on a sphere. Unless the number of
vertices is large, the resulting polytopes are not spherical
in appearance; they range from oblong to fat. The sim-
ulation parameters of the polytopes were their number,
their complexit,y measured as the number of faces, their
rotational velocity. their translational velocity, the den-
sity of their environment measured as the ratio of poly-
tope volume to environment volume, and the bounding
volume method used for the Sweep and Prune (fixed-size
or dynamically-resized boxes).

The simulation begins by placing the polytopes at ran-
dom positions and orientations. At each time step, the
positions and orientations are updated using the transla-
tional and rotational velocities (since the detection rou-
tines make no use of pre-defined path, the polytopes’
paths could just as easily be randomized at each time
step). The simulation then calls the I-COLLIDE sys-
tem and receives a list of colliding polytope pairs. It
exchanges the translational velocities of these pairs to
simulate an elastic reaction. Objects also rebound off the
walls of the constraining volume.

We use this simulation to test the funct,ionality and
speed of the detection algorithm. In addition, we are able
to visually display some of the key features. For example,
the bounding boxes of the polytopes can be rendered at
each time step. When the bounding boxes of a polytope
pair overlap, we can render a line connecting the clos-
est features of this polytope. It is also possible to show
all pairs of closest features at each time step. These vi-
sual aids have proven to be useful in indicating actual
collisions and additional geometric information for algo-
rithmic study and analysis. See Frame 1 at the end for
an example of the simulation.

5.4 Walkthrough

The walkthrough is a head-mounted display application
that involves a large number of polytopes depicting a re-
alistic scene. The integration of our library into such
an environment demonstrates that an interactive envi-
ronment can use our collision detection library without
affecting the application’s real-time performance.

The walkthrough creates a virtual environment (our
video shows a kitchen and a porch). The user travels
through this environment, interacting with the polytopes:
picking up virtual objects, changing their scale, and mov-
ing them around. Whenever the user’s hand collides with
the polytopes in the environment, the walkthrough pro-
vides feedback by making colliding bodies appear red.

We have incorporated the collision detection library
routines into the walkthrough application. The scene is
composed of polytopes, most of which are stationary. The
user’s hand, composed of several convex polytopes, moves
through this complex environment, modifying other poly-
topes in the environment. Frames 2-4 show a sequence

193

of shots from a kitchen walkthrough environment. The
pict,ures show images as seen by the left, eye. Frames 5-6
show the user in a porch walkthrough.

6 SYSTEM ISSUES

To use I-COLLIDE, the application first loads a library
of polytopes. The file format, we use is fairly simple. It
is straightforward t.o convert polytope data from some
other format (perhaps the output of some 3D modelling
package) to this minimal format for I-COLLIDE. After
loading the polytopes, the application t.hen chooses some
polytope pairs to act.ivate for collision detection. This
set of active pairs is fully configurable between collision
passes. Inside the application loop, the application in-
forms I-COLLIDE of the world t.ransformation for each
polytope as it moves around. At any point, the appli-
cation may call the collision test routine. I-COLLIDE
returns a list. of all the colliding pairs, including a pair of
colliding features for each. The application then responds
to these collisions in some appropriate way.

6.1 Space Issues

For each pair of objects, I-COLLIDE maintains a struc-
ture that contains the bounding box overlap status and
the closest feature pair between the objects. These struc-
tures conceptually form an upper-triangular O(n’) ma-
trix. We access an entry in O(1) time by using the object
id numbers as (row, column) entries. If only a few pairs
of objects are interacting, then the O(n2) can be reduced
at the expense of slightly larger access t.ime. For example,
we can traverse a sparse matrix list to access an entry.

6.2 Geometric Robustness

In practice there are several types of degeneracies or er-
rors that can occnr in the convex polytope models: du-
plicate vertices, extraneous vertices, backfacing polygons,
tracking error, non-planar faces, non-convex faces! non-
convex polytopes, disconnected faces, etc. We have writ-
ten a pre-processor to scan for common dcgeneracies and
correct them when possible.

6.3 Numerical Issues

Numerical robustness is an important issue in the exact
collision detection code. There are many special case ge-
ometrical tests in this module, and it is difficult to ensure
that the algorithm will not get into a cycle due to degen-
erate overlap. We deal with this by performing ail of our
feature tests to some tolerance. Without such a tolerance,
floating point errors might allow some of the feature tests
to cycle infinitely. We have not. observed this in practice
so far, and have been careful to make the tests stable in
the presence of small errors.

The multi-body sweep and prune code is also designed
to resist small numerical errors. The bounding box of
each poIyt.ope is ext,ended by a small epsilon ’ in each di-
rection. In addition to insulating the overlap tests from
errors, this precaution also helps give the exact collision
detection test a chance of being activated before the ob-
jects are act.ually penetrating.

‘This quantity is a function of velocity between the object
pairs.

6.4 Generality

While the multi-body pruning code works well with the
exact collision detection routine, it functions indepen-
dently of the underlying collision detection routine. This
second level collision routine might or might not be exact,
and it certainly need not be limited to handling convex
polytopes.

7 PERFORMANCE ANALYSIS

We measured the performance of the collision detection
algorithm using the multi-body simulation as a benc:h-
mark. We profiled the entire application and tabulated
the CPU time of only the relevant detection routines. All
of these tests were run on an HP-9000/750. The main
routines involved in collision detection are those that up-
date the bomding boxes, sort the bounding boxes, and
perform exact collision detection on overlapping bound-
ing boxes. A.s described in the implementation section we
use t.wo different types of bounding boxes. Using fixed
cubes as bolrnding boxes resulted in low collision time for
the parameter ranges we tested.

In each of the first. four graphs, we plot two lines. The
bold line dis.plays the performance of using dynamically-
resized bounding boxes whereas the other line shows the
performance of using fixed-size cubes. All five graphs re-
fer to “seconds per frame”, where a frame is one step of
the simulation, involving one iteration of collision detec-
tion without rendering time. Each graph was produced
with the following parameters, by holding all but one con-

stant.

Number of polytopes. The default value is a 1000
polytopes.

Complexity of polytopes, which we define as the num.-
ber of faces. The default value is 36 faces.

Rotational velocity, which we define as the number
of degrees the object rotates about an axis passing
through .its centroid. The default value is 10 degrees.

Translational velocity, which we define in relation to
the object’s size. We estimate a radius for the object,
and define the velocity as the percentage of its radius
the object travels each frame. The default value is
10%.

Density, .which we define as the percentage of the en.,
vironment volume the polytopes occupy. The default
value is 1.0%.

In the graphs, the timing results do not include com-
puting each polytope’s transformation matrix, rendering
times, and of course any minor initialization cost. We
ignored t.hese costs, because we wanted to measure t.he
cost of collision detection alone.

Graph 1 shows how the number of seconds per frame
scales with an increasing number of polytopes. We took
100 uniformly sampled data points from 20 to 3000 poly-
topes. The fixed and dynamic bounding box methods
scale nearly linearly with a small higher-order term. The
dynamic bounding box method results in a slightly larger
non-linear term because the resizing of bounding boxes

194

Graph 1 Graph 2

0.23

0.20 4

0.18 1
0.15 -

0.13 i

0.10 t
0.06 1

0.05 c

0.03 +

0.00 +.-----

0 500 ,000 1500 2000 0 100 200 300 400

Numkr 01 Polytopw Numb ot Faces

Graph 3 Graph 4

0.12

0.10 I

0.06

0.06

0.04

i c

1

;

0.02
I

0.02 t

0.00 .---__1 0.00 --.
0.0 2.0 4.0 6.0 6.0 10.0 0 102030405060706090

X Dmdty of Slmulallon Volume RotatIonal Vdoclty (deprwatlrama)

Graph 5

0 3 6 9 12 15 16 21 24 27 30 33 36 39 42 45

Rotational Velocity for Dynamic Box

Graph 6

0 3 6 9 12 15 16 21 24 27 30 33 36 39 42 45

Rotstlonsl Veloclly Ior Fhd Cube

causes more swaps during sorting. This is explained fur-
ther in our discussion of Graph 5. The seconds per frame
numbers in Graph 1 compare very favorably with the
work of Dworkin and Zeltzer [7] as well as those of Hub-
bard [14]. For a 1000 polytopes in our simulation, our
collision time results in 23 frames per second using
the fixed bounding cubes.

Graph 2 shows how the number faces affects the
collision time. We took 20 uniformly sampled data
points. For the dynamic bounding box method, increas-
ing the model complexity increases the time to update
the bounding boxes because finding the minimum and
maximum values requires walking a longer path around
the polyt.ope. Surprisingly, the time to sort the bounding
boxes decreases with number of faces, because the poly-
topes become more spherical and fat. -4s the polytopes
become more spherical and fat, t.he bounding box dimen-
sions change less as the polytopes rotate, so fewer swaps
are need in the sweeping step. For the fixed bounding
cube, the time to update the bounding boxes and to sort
them is almost constant.

Graph 3 shows the effect of changes in the density of
the simulation volume. For both bounding box methods,
increasing the density of polytope volume to simulation
volume results in a larger sort time and more collisions.
The number of collisions scales linearly with the density
of the simulation volume. As the graph shows, the overall
collision time scales well with the increases in density.

Graphs 4 through 6 show t.he effect of rotational veloc-
ity on the overall collision time. The slope of the line for
the dynamic bounding box method is much larger t.han
that of the fixed cube method. There are two reasons for
this difference. The first reason is that the increase in
rotational velocity increases the time required to update
the dynamic bounding boxes. When we walk from the
old maxima and minima to find the new ones, we need to
traverse more features.

The second reason is the larger number of swapped
minima and maxima in the three sorted lists. Although
the three-dimensional volume of the simulation is fairly
sparse, each one-dimensional view of this volume is much
more dense, with many bounding box intervals overlap-
ping. As the boxes grow and shrink, they cause many
swaps in these one-dimensional lists. And as the ro-
tational velocity increases, the boxes change size more
rapidly.

Graph 6 clearly shows the advantages of t,he static box
method. Both the update bounding box time and sort
lists time are almost constant as the rotat,ional velocity
increases.

All of our tests show ezuct collision detection in de-
manding environments can be achieved without incurring
expensive time penalties. The architectural walkthrough
models showed no perceptible performance degradation
when collision detection was added (as in Frame 2 to 5).

8 CONCLUSION
Collision detection has been considered a major bottle-
neck in computer-simulated environments. By making
use of geometric and temporal coherence, our algorithm
and system detects collisions more efficiently and effec-
tively than earlier algorithms. Under many circumstances
our system produces collision frame rates over 20 hertz

195

for environments with over a 1000 moving complex poly-
topes. Our walkthrough experiments showed no degra-
dation of frame rates when collision detection was added.
We are currently working on incorporating general poly-
hedral and spline models into our system and extending
these algorit.hms to deformable models.

9 ACKNOWLEDGEMENTS

We are grateful to John Canny and David Baraff for
productive discussions and to Brian Mirtich for his help
in implementation of the convex polytope pair algo-
rithm. The kitchen and porch models used in the walk-
through applications were designed by the UNC Walk-
through group, headed by Fred Brooks. This work was
supported in part by DARPA ISTO order A410, NSF
grant MIP-9306208, NSF grant CCR-9319957, ARPA
contract DABT63-93-C-0048, ONR contract NOO014-94-
l-073:3 and NSF/ARPA Science and Technology Center
for Computer Graphics and Scientific Visualization, NSF
Prime Contract 8920319.

References

Dl

M

PI

PI

PI

PI

PI

PI

A..Garica-Alonso, N.Serrano, and J.Flaquer. Solv-
ing the collision detect.ion problem. IEEE Computer
Graphics and Applications, 13(3):36-43, 1994.

D. Baraff. Curved surfaces and coherence for non-
penetrating rigid body simulation. AChf Computer
G’raphics, 24(4):19-28, 1990.

D. Baraff. Dynamic simulation of non-penetrating
rigid body simulation. PhD thesis, Cornell Univer-
siI;y, 1992.

S. Cameron. Collision detection by four-dimensional
intersection testing. Proceedings of International
Conference on Robotics and Automation, pages pp.
291-302, 1990.

S. Cameron. Approximation hierarchies and s-
bounds. In Proceedings. Symposium on Solid Model-
in,g Foundotions and CAD/CAM Applications, pages
129-137, Austin. TX, 1991.

J. Cohen, M. Lin, D. Manocha, and K. Ponamgi.
Interactive and exact collision detection for large-
scaled environments. Technical Report TR94-005,
Department of Computer Science, University of
North Carolina, 1994.

P. Dworkin and D. Zeltzer. A new model for effi-
cient dynamics simulation. Proceedings Eurographics
workshop on animation and simulation, pages 175-
184, 1993.

H. Edelsbnmner. A new approach to rectangle inter-
sections, Part I. Internat. J. Comput. Math., 13:209-
219, 1983.

J I Snyder et. al. Interval methods for multi-point col-
lisions between time dependent curved surfaces. In
Proceedings of ACM Siggraph, pages 321-334, 1993.

PO1

WI

w4

[I31

[I41

[I51

I161

[171

Pf31

PI

PO1

[X]

E. G. Gilbert, D. W. Johnson, and S. S. Keerth.i. A
fast procedure for computing the distance between
objects in three-dimensional space. IEEE J. Robotics
and Automation, vol RA-4:pp. 193-203, 1988.

J. K. Hahn. Realistic animation of rigid boclies.
Computer Graphics, 22(4):pp. 299-308, 1988.

J.E. Hopcroft, J.T. Schwartz, and M. Sharir. Effi-
cient detection of intersections among spheres. The
International Journal of Robotics Research, 2(4):77-
80, 1983.

H.Six and D.Wood. Counting and reporting imer-
sections of D-ranges. IEEE Transactions on Com-
puters, pages 46-55, 1982.

P. M. Hubbard. Interactive collision detection. In
Proceedings of IEEE Symposium on Research Fron-
tiers in Virtuul Reality, October 1993.

J.C. Latombe. Robot Motion Planning. Kluwer .4ca-
demic Publishers, 1991.

M. Lin and J. Canny. Efficient collision detection for
animation. In Proceedings of the Third Eurogra,uh-
its Workshop on Animation and Simulation, Cam-
bridge, England, 1991.

M.C. Lin. Eficient Collision Detection for Anima-
tion and Robotics. PhD thesis, Department of Elec-
trical Engineering and Computer Science, University
of California, Berkeley, December 1993.

M. Moore and J. W&elms. Collision detection and
response for computer animation. Computer Graph-
ics, 22(4):289-298, 1988.

MShamos and D.Hoey. Geometric intersection prob-
lems. Proc. 17th An. IEEE Symp. Found. on Com-
put. Science, pages 208-215, 1976.

A. Pentland. Computational complexity versus sim-
ulated environment. Computer Graphics, 22(2):185-
192, 1990.

M. Ponamgi, D. Manocha, and M. Lin. Incremex-
tal algorithms for collision detection between s0lj.d
models. Technical Report TR94-061, Department
of Computer Science, University of North Carolina,
Chapel Hill, 1994.

[22] F.P. Preparata and M. I. Shamos. Computational
Geometry. Springer-Verlag, New York, 1985.

[23] W.Thibault and B.Naylor. Set operations on poly-
hedra using binary space partitioning trees. ACM
Computer Graphics, 4, 1987.

[24] D. Zeltzer. Autonomy, interaction and presence.
Presence, 1(1):127, 1992.

196

Frame 1: 100 polytopes, 1% density, 56 faces.
Pair of bounding boxes overlapping.

Frame 2: A multi-polytope hand moves through
a kitchen walkthrough environment.

Frame 3: When bounding boxes overlap,
closest feature pairs appear.

Frame 4: Red poIytopes indicate coIIisions.

Frames 5 and 6: The hand touches a swing in a porch walkthrough.

Cohen, Lin. M~mocha, and Ponamgi,
“I-COLLIIX An Intcrxtivc and Exact Collision Iktcclion System for I .srgc-Scalct l3virwmcnts”

218

