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MotivationMotivation

• High detailed meshes becoming widely
available in computer vision, scientific
visualization, terrain data from
satellite… etc.

• Need to store, transmit, analyze, edit
and display them efficiently.

> 1M triangles!

GoalsGoals

• Reduce number of polygons
– Faster rendering

– Less storage

– Simpler manipulation

• Other qualities
– General (non-manifold)

– Efficiency

– Preserve attributes other than geometry
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Taxonomy of methodsTaxonomy of methods

• Manifold Simplification
– Vertex decimation

– Wavelet

– Edge collapse

• Non-manifold Simplification
– Vertex clustering

Mesh Decimation [Schroeder et al 92]Mesh Decimation [Schroeder et al 92]

• Multiple passes

• For each pass remove all vertices that matches
certain criteria and retriangulate

• Criteria: distance to plane/edge

• Advantage: simple algorithm, fast

• Disadvantage: big memory



Simplification of 3D Meshes 4

Re-Tiling [Turk 92]Re-Tiling [Turk 92]

• Steps:
– Generate random points on surface
– Iterative repulsion spread the points out uniformly
– Add new set of points to the surface and mutual tessellate
– Remove old vertices one by one yielding a new triangulation

• Variant to put points adaptively depending on curvature

• Advantage : maintain topology
• Disadvantage : complex algorithm, blur sharp features.

Re-Tiling (Re-Tiling (con’ tcon’ t))
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3D Grid Method [3D Grid Method [RossignacRossignac--Borrel Borrel 93]93]

• Steps:
– Subdivide the bounding volume into regular

grid

– Merge all vertices within each cell together
into a new vertex

– Form triangles according to original topology.• Advantage: very general,
fast

• Disadvantage : low
quality, non-adaptive

Optimization [Hoppe et al 93]Optimization [Hoppe et al 93]

• Optimization based simplification. Minimize
energy function.

• Repeat semi-random changes to topology and
optimize the geometry.

• Work on manifold

• Advantages: High quality, less sensitive to noise

• Disadvantages: slow
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Mesh OptimizationMesh Optimization

Hugues Hoppe, Tony DeRose,

Tom Duchamp, John McDonald,

Werner Stuetzle, SIGGRAPH 93

OptimizationOptimization

• Similar problem to simplification

• Starting with sample data points from the surface
and a initial mesh, find a simpler mesh

• Minimize energy function that describes the
conciseness and accuracy of the mesh
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Mesh RepresentationMesh Representation

• A mesh is represented by a pair (K,V)
– K is a simplicial complex representing the

connectivity of the vertices/edges/faces.

– V={ v1,,…, vm}  is a set of  m vertex positions
defining the shape of the mesh in R3

• If mesh is not self-intersecting, every point can be
represented by a barycentric vector

Energy FunctionEnergy Function

• E(K,V) = Edist (K,V) + Erep (K) + Espring(K,V)

• Edist (K,V)  =

• Erep(K) = crepm

• Espring(K,V) =
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Minimizing the Energy FunctionMinimizing the Energy Function

• A bigger crep → sparser representation.

• Outer loop optimize over K (Discrete)

• Inner loop optimize over V for a fixed K
(Continuous)

• = Minimize +

• For each xi , distance =

• New objective function :
– E(K,V,B)=

Optimization for fixed KOptimization for fixed K
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Optimization over fixed KOptimization over fixed K

• Two subproblems :
– For fixed vertices V, find optimal barycentric

coordinate vectors B by projection

– For fixed B, find optimal V by solving a linear
least squares problem

• Find optimal solutions to both subproblems, so
E(K,V,B) must converge.

ProjectionProjection Subproblem Subproblem

• Find optimal B by projecting xi onto the mesh.

• To accelerate, build a spatial partitioning data
structure so that for each point only consider
nearby subset of faces

• Assume a point’s projection lies in the
neighborhood of its projection in previous
iteration (perform well in practice)
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Linear Least Squares Linear Least Squares SubproblemSubproblem

• Minimize for x,y,z coordinates,
– v m-vector

– A (n+e)×m matrix

– d (n+e)-vector

For m mesh vertices, n data points, e edges

– First n rows of d contains the n data points

– Next e rows of d are zeroes

– v contains the m mesh vertices

2
dv −A

Linear Least Squares (Linear Least Squares (con’ tcon’ t))

– First n rows of A contains the barycentric
coordinates computed in projection (at most 3
non-zero entries)

– Next e rows represent the spring energy: each
contains an √κ and -√κ entries in columns
corresponding to indices of edge’s endpoints
(exactly 2 non-zero entries)

• A is sparse. Use “conjugate gradient method”
to solve in O(n+m) time

2

jjA dv −
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Optimization over KOptimization over K

• Take a legal move and accept if it gives lower
energy. Terminate if a number of trials failed to
give a lower energy.

• Legal move : application of one of these that
leaves the topological type of K unchanged

• Three elementary transformations:
edge collapse/split/swap

Legal moveLegal move

• Split – Always legal

• Collapse : if and only if…

• For all vertices { k}  adjacent to
both { i}  and { j} , { i,j,k}  is a face

• If { i}  and { j}  are both boundary
vertices, { i,j}  is a boundary edge

• K has more than 4 vertices if { i}
and { j}  both are not boundary
vertices, or K has more than 3
vertices if either { i}  or { j}  are
boundary vertices

• Swap – if and only if { k,l}  ∉ K

• Proof in Hoppe et al, TR 93-01-01
University of Washington
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Evaluation of a legal moveEvaluation of a legal move

• Instead of re-computing the global energy after a
legal move, only compute the change in energy for
the local submesh

• For s ∈ K, define star(s;K) = { s’  ∈ K : s non-
empty subset of s’ }

Edge CollapseEdge Collapse

• To evaluate collapsing of an edge { i,j} ,
take the submesh to be star({ i} ;K)∪
star({ j} ;K). Optimize over the new vertex
h while holding all other constant

• Attempt optimizations starting at vi, vj ,
and ½(vi+vj).  Accept the best one.

• Instead of checking for self-intersection
after collapse which is expensive, use a
threshold value for the maximum dihedral
angle of edges in star({ h} ;K’ )
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Edge split/swapEdge split/swap

• Edge split –
– Same procedure as collapse, using the

submesh to be star({ i,j} ; K). Initial value of vh

be ½(vi+vj).

• Edge swap-
– For a swap that replace an edge { i,j}  with { k,l} ,

choose the best of the two optimizations, one
with submesh star({ k} ;K’ ) varying vertex vk,
another with submesh star({ l} ;K’ ) varying
vertex vl.

ResultsResults

Sample Points
 (6752 vertices)

Initial mesh
 (2032 vertices)

crep=10-5

(487 vertices)
crep=10-4

(239 vertices)
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ResultsResults

Results - SegmentationResults - Segmentation
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Progressive MeshesProgressive Meshes

Hugues Hoppe

SIGGRAPH 96

Additional GoalAdditional Goal

•• LosslessLossless, continuous-resolution, progressive, continuous-resolution, progressive
representationrepresentation

•• More compact representationMore compact representation

•• Apart from geometry, also preserve otherApart from geometry, also preserve other
attributes  (colors,attributes  (colors, normals normals, materials, texture, materials, texture
coordinatescoordinates……))
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Mesh RepresentationMesh Representation

• Edge collapse only is sufficient!

• An initial mesh
can be simplified into a coarser mesh M0 by a sequence of
edge collapse.

• The sequence is invertible

nM M̂ =
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→→→=
nn ecolecolecol

�

Progressive MeshProgressive Mesh

01n MM)M M̂(
111 −−

→→→=
nn ecolecolecol
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Energy FunctionEnergy Function

• Old
E(K,V) = Edist (K,V) + Erep (K) + Espring(K,V)

• New
E(M) = Edist (M) + Espring(M) + Escalar(M)
+Ediscrete(M)     where M = (K,V,D,S)

• Erep goes away! And so does the parameter crep

Preserving geometryPreserving geometry

• Edist + Espring

• Same as before, but only consider edge collapse in
the outer loop.

• The possible legal collapses are placed in a
priority queue with its estimated energy change
∆E

• For an edge collapse K→K’ , ∆E = EK’-EK

• After each collapse, the cost of its neighborhood
edges in the priority queue are updated.
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Preserving Scalar attributesPreserving Scalar attributes

• For d scalar attributes, we could have added d
dimension to Edist.

• For efficiency purpose, we separate it as a
different term

• First solve for the vertex positions. Then using the
same bi to find vertex attributes minimizing Escalar

by linear least square

2
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Preserving Scalar AttributesPreserving Scalar Attributes

200x200 vertices 400 vertices
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Preserving discontinuityPreserving discontinuity

• We want to preserve discontinuity
because they often form noticeable
features

• sample an additional set of points Xdisc

from sharp edges of initial mesh.
Compute Edisc  by projecting Xdisc onto
the corresponding sharp edges

• disallow/penalize collapse of boundary
and discontinuity edges

Without Edisc
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