Computing with functions




Overview

e Most programs that we have seen treat
objects as abstract data types

—1
—1
—1
t

ney define both state and behavior
ne state is primary
ne behavior describes how to manipulate

ne state

e Sometimes, It Is useful to treat behavior
as more important than state




A classic example

e Many programming languages have sort
functions as part of their libraries

e |t is usually useful to be able to specify
a comparison function as an argument
to the sort function




Another example

e Suppose we want a generic linear-
search function

 \We have seen how to make the
function independent of the data
structure being searched

e \What about making it independent of
the search criterion as well?




Searching for a particular

e The fi1nd function looks for the first
element with a given value:

template<class It, class X>
It find(lt begin, It end, const X& X)

{
while (begin = end && *begin = X)
++begin;
return begin;

}

e How can we generalize the search
criterion?




Generalizing the search
criterion

e \We want something to which we can
hand a sequence element and get an
answer: yes or no

e |t seems to make sense for that
something to be a function whose input
IS an X and output is a bool




Rewriting the search function

template<class It, class X>
It find2(1t begin, It end, bool (T)(X))
{
while (begin '= end && 'f(*begin))
++begin;
return begin;

}
e Can we generalize it even more?




Further generalization

e \We need not Insist that T be a function.
It can be any appropriate type:

template<class It, class F>
It find 1 f(lt begin, It end, F T)

{
while (begin '= end && 'T(*begin))
++begin;

}
e How might T be anything other than a
function?




Function objects

e I[n C++, we can call any object as If it
were a function, provided that the
object has operator () defined

e |In other words, If obj Is an object, then
obj (x) means obj .operator() (x)

e Of course, obj has to be of a type with
operator () defined

e \We call such objects function objects




In other words...

e The find 1T function will accept any
function or function object as its third
argument

e |t will call the function (or call the
operator () member of the object) to
test each element of the sequence




e Find the first white-space character in a
string:
find(s.begin(), s.end(), 1sspace)




A more Interesting example

e Suppose that b and e are iterators that
delimit a sequence, and we want to find
the first element that is >10

e \We might write a function
bool gtl0(int x) { return x > 10; }

e and then call
find(b, e, gtl0)

e But what If we want to find the first
element that iIs >n?




Doing It the hard way

INt xXX;
bool gtxx(int x) { return X > XX; }

e and then, we might say

XX = N;
. Find_if(b, e, gtxx) ..

e This approach is ugly!
e \Why?




Why the approach iIs ugly

e |t relies on a global variable

e To use It, you must

— set the state explicitly (by assigning to the
variable), and then

— call the function

e |n effect, the function relies on hidden
state




How to clean It up

e Bind the state and the function together

Into a function object:

class gt n {
public:
gt n(int n0): n(n0) { }
bool operator()(int x)
{ return x > nj; }
private:
int n;

¥




Using class gt _n

e To find the first element >10:
find if(b, e, gt n(10))

e To find the first element >x:
find _1f(b, e, gt n(x))

e |In both cases, global variables are
unnecessary




It might be nice If...

e Another way to get rid of the global
variable would be to make it local:

{ -
Int n;
bool gt n(int x) { return x > n; }
.. Find_1f(b, e, gt n) ..

}
e But C++ doesn’t allow this technique

e \Why not?




Nested functions

e Programming languages of the Algol
and Pascal family generally allow nested
functions

e C and C++ do not

e The reason has to do with ease of
Implementation: While a function is
executing, It sees only its own local
variables and all global variables




Function objects simulate
nested functions

e If a function could be nested Inside
another, you would be able to get at
the Iinner function’s local variables, or
those of the outer function(s), or global
variables

e A member function can get at its local
variables, or its object’s members, or
global variables




Generating function objects

e Our gt_n type lets us create function
objects that encapsulate comparison
with a particular value

e |t would be tricky to do that even with

nested functions (because It needs GC):
bool (*gt n(int n))(int)

1
bool f(int x) { return x > n; }

return T;




Two problems

e Allowing nestec
potentially com

functions In a language
nlicates the calling

seguence for al

functions

e Allowing functions to return nested

functions as val

ues causes trouble

unless the language supports garbage

collection

e C++ pushes the complexity into objects




How do other languages do It?

e Functional languages treat functions as

first-class values:
find 1f(b, e, (fn X => X > n))
e Pure object-oriented languages (Smalltalk,
Java) don’t have functions as separate
entities at all




Function objects are objects

e Because function objects are objects,
we can perform computations on them

e |t Is possible to write functions (and the
C++ standard library includes some
such functions) that make it
unnecessary to define classes such as
gt _n at all




Some sample library functions

e Template class greater Is defined so
that greater<T>() (X, Yy) has the
same value as x>y (and similarly for
less, equal_to, ...)

e If Tis a function object, then template
function bindlst(f, x)(y) has the
same value as (X, Yy) (and similarly
for bind2nd)




Using greater and bind2nd

e To find the first element >n:
find(b, e, bind2nd(greater<T>(), n))




Making binders work

e C++ binders are a nice example of
making a high-level abstraction work in
a language that wasn’t designed In
advance to support it

e Binders and function objects rely on a
mixture of code and conventions




Function object conventions

e Every function object has a member
called result_type that names the
type of its result

e |n addition,

—If It has a single argument, it has a
member named argument_type

—If It has two arguments, it has members
named fFirst_argument_type and
second_argument_type




Abbreviation base classes

template<class A, class R>
struct unary_function {

typedef A argument_type;

typedef R result_type;
};
template<class Al, class A2, class R>
struct binary_ function {
typedef Al first_argument type;
typedef A2 second_argument_ type;
typedef R result_type;

}:




Definition of greater

template<class T> class greater:
public binary function<T, T, bool>: {
public:
bool operator()
(const T& X, const T& y) const

1
}

return X > y;




Making bind2nd work

e The result of bind2nd(f, Xx) has to
Include the values of ¥ and X

e Therefore, it has to have a type that
Includes the types of ¥ and x

e \We need an auxiliary type, which we
will call binder2nd, to do the work




Definition of binder2nd

template<class Op> class binder2nd:
public unary_ function<
typename Op::first_argument type,
typename Op::result _type> {
public:
binder2nd(const 0Opé&,
const typename Op::second_argument type&);
result _type operator()
(const typename Op::first _argument_type&)
const;
private:
Op op;
typename Op::second _argument type value;

}:




Member functions of
binder2nd

template<class Op>
binder2nd: :binder2nd(
const Op& o,
const typename Op::second _argument type& V):

op(o), value(v) { }
template<class Op>
binder2nd: :result_type operator()
(const typename Op::first _argument_type& arg)
const

1
}

return op(arg, value);




Definition of bind2nd

template<class Op, class T>
binder2nd<Op> bind2nd(const Op& op, const T& t)
{
return binder2nd<Op>(op,
typename Op::second _argument type(t));




The point of all this code

e Although the types are somewhat
messy,
— the classes themselves are small
— they can be combined in useful ways

— the techniques used to build them can be
used In other contexts

e Objects can be abstractions of behavior,
not just of data structures




Other relevant library
functions

e |If Tis a (pointer to a) function,
ptr_ Tun(f) is the corresponding
function object

e |If pred is a unary (function object)
predicate, notl(pred) is a predicate
that yields the inverse result




Using ptr_ fTun and notl

e Find the first non-space character in the
string s.

find_1f(s.begin(), s.end(),
notl(ptr_ fun(isspace)));




A few more examples

e Flip the sign of every element of x:

transform(x.begin(), x.end(), Xx.begin(),
negate<x::value_type>());

e Replace every pointer to a null-
terminated string that compares equal

to “C” by a pointer to “C++"

replace 1f(x.begin(), x.end(),
notl(bind2nd(ptr_fun(strcmp), “C?)),
“C++11) ;




Projects

e Each team will be expected to
demonstrate Its project
— be prepared to answer design and process

related guestions

e Each team has to find appropriate
computing facilities for the
demonstration and schedule a mutually
agreeable time

e All demonstrations during exam week




Project scheduling

10:30
« If we heard from you by X PM, April 20

(well beyond the original deadline), we
accommodated your requests

e If not, It Is now your problem! Either
pick an open slot or trade with another
project




Project reviews for
Monday, 5/17

e All 4 slots still open
—10:30 - 11:30
— 1:30 - 2:30
— 3:00 - 4:00
— 4:30 - 5:30




Project reviews for
Tuesday, 5/18

e 10:30 Campus Calendar
e 1:30 Direct Chat
e 3:00 AT 5000

e 4:30 Sound Images




Project reviews for
Wednesday 5/19

e 10:30 This space available
1:30 Space Dust
3:00 Redemption
5:15 Clipbook




Project reviews for
Thursday, 5/20

e 10:30 This space avallable
e 1:30 Online Trading

e 3:00 Project Vulcan

e 4:30 Logic Studio




