Generic programming

How to write programs that don't

quite know what they’re doing




Overview

e The traditional view of algorithms and
data structures ties them closely
together

e It doesn’t have to be that way

— especially not for simple algorithms...

— which turn out to be useful in surprisingly
many contexts

e These ideas take different forms in
different languages




The fundamental idea

e Instead of designing algorithms to deal
with specific data structures, we can
design them in terms of abstractions of
data structures

e By fitting an appropriate abstraction to
each of several data structures, we can
make the same algorithm work with
several different data structures




What is an abstraction of a
data structure?

e A set of operations that are
— common to several data structures
— useful for several algorithms

e A way of thinking about data structures
in general that does not rely on any
specific data structure

e Fundamental example: the idea of a
seguence




Abstracting a sequence

e What sequence operations are
fundamental?

— examine each element in turn
— generate a sequence

e Other operations are less fundamental
— search for a particular element

— reverse the elements
— sort them, etc.




What kinds of sequences are

e Arrays

o |ists

e Files are particularly interesting
— elements might not all be available

—reading is potentially destructive
— when you write is important

e \What else can you dream up?




Input and output differ

e If we are going to treat files as
sequences, the distinction is essential

e Many algorithms also make the
distinction
— copying reads the input, writes the output

— searching just reads, although whatever
requested the search might write later

— reversing a sequence reads and writes




A sample algorithm

e Search a sequence for a particular value
— start with the first element

— keep looking until the element is found or
the sequence is exhausted

— stop as soon as you find what you wanted

e How might we find an abstraction of
sequences that will let us implement
this algorithm?




What doesn’t work

e We can't assume that all sequences will
support the same operations

e Therefore, we cannot rely solely on
operations defined along with the
sequences themselves

e Our abstractions will have to be defined
separately




Strategy (classical approach)

e Invent an interface that does what we
want

e Declare a base class that captures that
interface

e Derive a class for each data structure
we care about




A concrete example

e To keep it simple, assume we are
reading (not writing) sequences of
integers

e What are the key operations?

— Determine whether there are any elements
eft in the sequence

— Fetch the next element in the sequence




An abstract base class

class InSeq {

public:
virtual bool avail(
virtual 1nt next()
virtual ~InSeg() {

};
e \We assume that each call to next will
be preceded by a call to avail




How might we use it?

bool find(InSeg& s, 1nt x)

{
while (s.avail()) {

1f (s.next() == x)
return true;

}

return false;



Using InSeq

e Suppose we have an integer array
called a, with n elements

e How do we determine whether a
contains a value equal to x?

— Derive a class from InSeq that lets us use
an array as a sequence

— Call f1nd with an appropriate object of
that derived class




Deriving from InSeq

class IntArraySeq: public InSeq {
public:
IntArraySeq(const 1nt*, 1nt);
virtual bool avail();
virtual 1nt next();

private:
int n;
const 1nt* p;

}s




IntArraySeqg member
definitions

IntArraySeq: :IntArraySeq
(const 1nt* pO, 1nt nO):
p(p0), n(n0) { }
bool IntArraySeq::avail()
{

¥
1nt IntArraySeq: :next()
{

}

return n > 0O;

--n; return *p++;




Using IntArraySeq to search
an array

int a[100];
IntArraySeq s(a, 100);

1t (find(s, 42)) {
// a contains the value 42

}




Why does it work?

e Class InSeq has defined a general
interface

e Class IntArraySeq has specialized
that interface for arrays

e Fach time find calls s.avail1() or
s.next (), that is a virtual call that
executes the corresponding
IntArraySeq operation




Advantages of this approach

e \We have to define only one abstract
interface for each overall strategy for
accessing sequences

e \We can define another derived class
from InSeq for each kind of sequence
we care about

e Each derived class is potentially useful
to many algorithms




Disadvantages of this
approach

e Fach call to avai1l1() or next() isa
virtual call, with associated overhead

e Using an IntArraySeq destroys it
e \We would like to be able to copy
IntArraySeq objects

— We should be able to save an |
IntArraySeq before we destroy it

— After we find a particular value, we would
like to be able to remember where it was

e \We don't want to deal just with integers




Overcoming the
disadvantages

e The difficulty in copying is peculiar to
C++

e The overhead it not, but some
languages just live with it

e C++ can solve both problems by using
templates, which allow compile-time
polymorphism




Templates: overall idea

e Instead of having a single type InSeq
to represent integer input sequences

only, we define a family of types:

template <class T> class InSeq {
public:
virtual bool avail() = O;
virtual T next() = 0;
virtual ~InSeq() { }

}s




Two kinds of templates

e Class templates: We must supply type
arguments every time we use a class
template

e Function templates: We generally do
not supply type arguments because
they are inferred from the function
arguments




A simple class template

template<class T> class Vector {
public:

Vector(int n0): n(n0), p(new T[nO0])

{ }
~Vector() { delete [] p; }
T& operator[](int k)
{ return p[k]; }

private:

int n;

T p;
s




A simple function template

template<class T>
T sum(Vector<T>& v, 1nt n)
{
T result = 0;
for (int 1 =0; 1 < n; ++1)
result += v[n];
return result;




Using these templates

Vector<double> v(100);

for(int 1 = 0; 1 < 100; ++1)
vii] =1 * 1;

double s = sum(v, 100);




We could define f1nd this

bool find(InSeg<int>& s, 1nt x)

{
while (s.avail()) {

1t (s.next() == x)
return true;

}

return false;




But it's more useful to define
it this way:

template<class X>
bool find(InSeg<X>& s, X x)
{
while (s.avail()) {
1f (s.next() == x)
return true;

}

return false;




We now declare ArraySeq as a
generalization...

template<class T>
class ArraySeq: public InSeg<T> {
public:
ArraySeq(const T*, 1nt);
virtual bool avail();
virtual T next();

private:
int n;
const T* p;

}s




... and define it this way:

template<class T> ArraySeg<T>::ArraySeq
(const T* p0O, 1nt n0):
p(p0), n(n0) { }
template<class T>

bool ArraySeq<T>::valid() {
return n > 0;
}

template<class T> T ArraySeq<T>::next()
{

}

--n; return *p++;




Now we can use f1nd almost

int a[100];
ArraySeg<int> s(a, 100);
1f (find(s, 42)) {

// a contains the value 42

}




Where are we now?

e \We can define an ArraySeq class for
an array of objects of any type

e \We can derive other classes from
InSeq for other containers

e But we still have the virtual-function
overhead for each call

e Moreover, it's still unclear what the
right InSeq interface is




What is an InSeq, really?

e A separate object that grants access to
a data structure

e An InSeq captures the idea of stepping
through an (unknown) data structure

e We can therefore call InSeq (and
similar classes) iterators

e The next lecture will look at other forms
of iterators




Homework (due Monday)

e Derive another class from InSeq that
reads input from a file, rather than from
an array

e Use that class to compute the sum of a
sequence of floating-point values read
from the standard input

e Jt's OK to use an object-oriented
language other than C++ if you like




