Handles and use counts
(revisited)

Improving the Expr class Interface



Expr Interface Problems

e The Expr hierarchy we built requires
users to explicitly manage memory

Expr* e =
new BinaryExpr(“+”,
new UnaryExpr(“-", new IntExpr(5)),
new BinaryExpr(“*”, new IntExpr(3),
new IntExpr(4)));

e->print(cout);
delete e;




More problems

e We can't copy Exprs, only object
derived from Expr

e Memory management is incomplete:
Expr* e = new IntExpr(42);

Expr* e2 =
new BinaryExpr(“+”, e, e);

delete e2; // Qops!




We can do better...

e Revise our expression classes to behave
like values, efficiently

— Provide efficient & correct copy semantics

(do not copy

the underlying tree)

— Memory management should be automatic
e Hide the type hierarchy (because values

are not objec

s, SO where would the

hierarchy be useful?)




How are we going to use it?

e Only one user-visible expression type

e Overloading can distinguish the
constructors
Expr(int)
Expr(const char*, const Expré&)

Expr(const char¥*,
const Expr&, const Expré&)




Example of usage

Expr e("*”,

Expr(“-", Expr(3)),

Expr(“+”, Expr(4), Expr(5)));
e.print(cout);




Declaration of Expr

class Expr {
public:
Expr(int);
Expr(const char*, const Expr&);
Expr(const char¥*,
const Expr&, const Expr&);
Expr(const Expr&);
Expr& operator=(const Expr&) ;

~Expr();
void print(ostream&) const;




Why no virtuals?

e Part of the purpose of this class is to
hide the earlier Expr hierarchy

e \We are not going to inherit from this
version of Expr; instead, we will define
a hew hierarchy




The data structure

Auxiliary object




The auxiliary data structure

e Contains the real data associated with
an Expr

e Does not need to be modified once
created (because print is
nondestructive)

e Needs to be deleted when the last
Expr pointing to it has gone away




General C++ strategy for such

e Class Expr contains (only) a pointer to
the auxiliary class

e The auxiliary class is an abstract base
class for the hierarchy

e The auxiliary class also contains a use
count, which Expr manipulates




Revised data structure

Use count
Rest of auxiliary object




What classes do we need?

e Class Expr is the user interface

e Class ExprBase is the root of the
auxiliary hierarchy

e Other classes in the hierarchy
- IntExpr
- UnaryExpr
- BinaryExpr




These classes know about
each other

e When the user creates an Expr, it must
know how to create the appropriate
auxiliary class

e Class Expr must also know how to
manipulate the use count in ExprBase

e We will have a lot of friendly classes on
our hands




The class hierarchy

lass Expr { /* .. */ };

lass ExprBase { /* .. */ };

lass IntExpr: public ExprBase
1 /% . */ 1}

class UnaryExpr: public ExprBase
1 /% . */ 1}

class BinaryExpr: public ExprBase

L /% . %) 1




Private data in Expr

class Expr {
public:
// As before
private:
ExprBase* p;
5




Declaration of ExprBase

class ExprBase {
friend class Expr;
protected:
ExprBase();
1nt use;

virtual void print(ostream&)
const = 0O;
virtual ~ExprBase() { }




We can start to define Expr

e The print function just calls the

corresponding ExprBase virtuals
void Expr::print(ostream& o) const

{
¥

p->print(o);




What about the constructors?

e \We can start with the one-argument
constructor and see how we would like
it to work:

Expr::Expr(int n):
p(new IntExpr(n)) { }

e What does this desired usage say about

class ExprBase?




The ExprBase constructor

e \We want the use count in ExprBase to
count how many Expr objects point to
this particular ExprBase object

e When we construct an ExprBase, that
number is about to be 1

e Therefore, the constructor should

arrange that:
ExprBase: :ExprBase(): use(l) { }




The Expr destructor

e Manipulate the use count of the
corresponding ExprBase object

e Destroy it if (and only if) the use count
becomes zero
Expr: :~Expr(Q)
{
1f (--p->use == 0)
delete p;




Expr copy and assignment

e Copying an Expr never needs to copy
the underlying ExprBase, because
there are no mutative operations on

ExprBase objec

(S

e Ditto for assignment

e S0 we just copy the pointers and
manipulate the use counts

e Assignment is slightly tricky




Implementing copy and
assignment

Expr::Expr(const Expr& e): p(e.p)
{

¥
Expr& Expr::operator=(const Expr& e)
{

++p->use;

++e.p->use;

1f (--p->use == 0)
delete p;

Pp = e.p,;

return *this;




Look familiar?

e This code looks remarkably like the
corresponding code from lecture X in
which we implemented use-counted
Strings

e This technique is sufficiently common
that you really want to understand it
thoroughly




The other two constructors
are simple

Expr::Expr(const char®* op,
const Expr& e):
p(new UnaryExpr(op, e)) { }
Expr::Expr(const char* op,
const Expr& el, const Expr& e2):
p(new BinaryExpr(op, el, e2)) { }




What about those other three

e Class IntExpr is pretty simple

e Classes UnaryEx
both have to deal

e Fortunately, we n

pr and BinaryExpr
with subexpressions

ow have a way to deal

with such subexpressions, nhamely class

Expr itself!

e Instead of storing pointers, we will

store Expr objec

s, which are

abstractions of pointers




Class IntExpr definition

class IntExpr: public ExprBase {
friend class Expr;
IntExpr(int n);
void print(ostream&) const;
int n;




IntExpr implementation

IntExpr::IntExpr(int n0): n(n0) { }
void IntExpr::print(ostream& o) const

{
¥

0 << N;




Class UnaryExpr definition

class UnaryExpr: public ExprBase {
friend class Expr;
const char* op;
Expr e;

UnaryExpr
(const char*, const Expr&);

void print(ostream&) const;




Implementation note

e That Expr member called e in class
UnaryExpr is magic in several ways
—Using Expr: :Expr(const Expr&) to

initialize it will take care of memory
Mmanagement

— Calling e.print will result in appropriate
virtual calls automatically

— Destroying the surrounding UnaryExpr
will destroy e appropriately




UnaryExpr implementation

UnaryExpr: :UnaryExpr
(const char* x, const Expr& y):
op(x), eCy) {}

void UnaryExpr::print(ostream& o) const

{
o << “(";
e.print(o);
o << “)7;




BinaryExpr definition

class BinaryExpr: public ExprBase {
friend class Expr;
const char* op;

Expr el;
Expr e2;

BinaryExpr(const char®,
const Expr&, const Expr&);

void print(ostream&) const;




BinaryExpr implementation

BinaryExpr: :BinaryExpr(const char* x,
const Expr& y, const Expr& z):
op(x), el(y), e2(z) { }

void BinaryExpr::print

(ostream& o) const {
o <<, "(7;
el.print(o);

0 << 0p;
e2.print(f);
o << “)7;




Compiling the program

e Getting a program like this to compile
can be a bit of a pain

e The hard part is putting the pieces in
the right order

e General rules will help

— Names must be declared before they are
used

— Definitions can usually come fairly late




Typical dependencies

e Class Expr must know about class

ExprBase
class Expr {

// ..
ExprBase* p;
5

e The Expr constructors must know
about the various derived classes




An ordering that works

e Declaration of ExprBase (which
implicitly declares Expr as a class by
naming it as a friend)

e Declaration of Expr (which uses
ExprBase as the type of p)

e Declarations of the derived classes
e Member function definitions




An alternative ordering

e First, say
class ExprBase;
to make it known that ExprBase is the
name of a class

e Next, declare Expr (which needs to
know about ExprBase)

e Then declare ExprBase, and continue
as before




What about garbage
collection?

e It would be nice to have it, but

— Very little of the code in this example is
concerned with memory management

— Use counts let us free resources accurately
and immediately, without waiting for the
next garbage collection

— Garbage collection deals only with
memory; there are other resources too.




Discussion

e This whole program has been about
defining values that use objects

e So far, however, we really haven't cared
much about objects versus values,
because we don’t modify the objects

e However, we can extend the handle
techniques to include “copy on write”




Discussion (continued)

e Even if we don't modify our objects, we
have

— made it possible to copy handles without
copying the underlying data structures

— arranged for the data structures to go
away automatically when we're done with
them




