Another object-oriented
program

Prime numbers the hard way

(based on a program by Ravi Sethi in
his book Programming Languages—
Concepts and Constructs)




The object of this program

e Compute prime numbers, by

— generating integers

— discarding the ones that aren't prime
e Do so in an object-oriented style

— a chain of objects, each of which discards
multiples of a particular integer

— the chain grows dynamically for each prime
number computed




The data structure

Generate integers m

Discard multiples of 2

!

Discard multiples of 3
Prime numbers! j

f Discard multiples of 5

\jcard/multiples of 7




What classes do we need?

e Classes that can act as a source of
integers
— Counters generate consecutive integers
— F1 1ters discard multiples of an integer

e A wrapper class to do the prime-
number computation




We can already declare...

class Source { /* .. */ };

class Counter: public Source
/% %/ };

class Filter: public Source
/% %/ };

class Sieve: public Source

L /% . %/




... but we can do better

e A F1lter gets numbers from a
Source

e SO does a S1eve

e Therefore, we can define an auxiliary
class to represent the idea of “a class
that gets numbers from a Source”

e \We will call that class Conduit




The revised hierarchy

class Source { /* .. */ };
class Counter: public Source

{ /% %/ };

class Conduit: public Source
(/% %/}

class Filter: public Conduit
{ /% %/ };

class Sieve: public Conduit

L /% . %/




What is a Source?

e You poke at it and get a number back

e Other classes will be derived from it

class Source {

public:
virtual 1nt next() = 0;
virtual ~Source() { }

Source() { }
private:
Source(const Source&);
Source& operator=(const Source&);

}s




Declaration of Counter

e Again, the declaration follows from the

requirements

class Counter: public Source {
public:

Counter(int);

virtual int next();

private:
int n;

}s




Definition of Counter

Counter::Counter(int n0): n(n0) { }
1nt Counter::next()

{
¥

return n++;




We can already use our
Counter class

1nt main()
{
Counter c(1);
int n;
do {
= c.hext();
cout << n << endl;
} while (n < 10);
return O;




What does a Condu1t do?

e [t takes input from a Source

e It delivers output on demand through
the next function

o It lets you find its Source

e It gives you a way to change the
Source to be somewhere else

e [t manages memory




Memory management

e As in the last lecture, we will assume
that if you give away a pointer to an
object, you also delegate responsibility
for deleting that object

e Class S1eve will hide memory details
from users

e SO it is sufficient for a Conduit to
delete its Source when destroyed




Declaration of Conduit

Class Conduit: public Source {
public:

Conduit(Source¥®);

virtual ~Conduit();

protected:
Source* source();
void splice(Source¥®);
private:
Source* src;

}s




Definition of Conduit

Conduit: :Conduit(Source* s):
src(s) { }
Conduit::~Conduit() { delete src; }

Source* source() { return src; }
voild Conduit::splice(Source* s)

{
¥

Src = S;




Class F1lter

e A F1lter accepts numbers from a
Source and screens out multiples of a
given integer

e Fundamental operations:

— Construct a F11ter from a given integer
and Source

— Fetch an integer




F1 1ter declaration

class Filter: public Conduit {
public:
Filter(int, Source*);
virtual 1nt next();
private:
int factor;
};




How does a F11ter work?

e Obviously, it must remember its source
(Condui t does that) and what to filter

e The next function does the actual
screening




Definition of F1 1ter

Filter::Filter(int f, Source* s):
Conduit(s), factor(f) { }

int Filter::next()

{ »
int n;
do n = source()->next();
while (n % factor == 0);
return n;




What should a S1eve do?

e Actual prime number computation
— Start a Counter at 2

— Each time we get back a humber, create a
new F11ter to screen out multiples of
that number

e Clean interface to the rest of the world
— Conceal the other classes
— Memory management




Using a S1eve

int main()
{
Sieve s;
int n;
do {
= s.next();
cout << n << endl;
} while (n < 100);
return O;




Declaring class S1eve

class Sieve: public Conduit {
public:

Sieve();

virtual i1nt next();

}s




Defining class S1eve

e The constructor is easy:

Sieve::Sieve():
Conduit(new Counter(2)) { }

e But what about the next function?

o It calls source () ->next (), which yields
the next prime

e Then it has to splice in a new F1lter




The data structure

Source

Filter




Definition of S1eve: :next

int Sieve::next()
{
int n = source()->next();

splice(new Filter(n, source()));
return n;




Observations

e A Steve turns out to act like a
Conduit, so it simplifies the code to
use Conduit as a base class

e Class S1eve does not need an explicit
destructor, because class Conduit
takes care of it

e Class Sieve is the only one intended
for end-user consumption




More observations

e Not an optimal algorithm
e Recursive deletes could be improved

e Nevertheless, the idea of growing a
data structure to represent an
increasingly complicated computation is
an important one

e In effect, we've built an interpreter for
a tiny, special-purpose language




Understanding object-oriented
programs

e Following the whole program at once
can be tricky

e One useful strategy

— Understand the whole program
approximately

— Understand each piece and its immediate
context

— Walk through it for some test cases




Homework (due Monday)

e Add a member to class Expr:
class Expr {
public:
int eval () const;

// .
}.

that returns the value corresponding to
an expression

e Revise your simulation to include a
corresponding member




