Dynamic binding

Noticing differences between

types when it matters




A simple view of the problem

e Suppose we have aclass Circle
derived from a base class Shape.

e If we have a pointer or reference to a
Shape, it might actually be pointing or
referring to a Circle.

e Why should we care?
e How can we tell?




Why do we care?

e The usual reason is that we want to
take one action if the Shape is a
Circle and some other action if it isn't

e Example: rotating a Circle requires
no action at all




An obvious solution

e Put a type code in each object

e Make sure that the type code is at the
same offset in all objects

e Use the type code to decide what to do




The obvious solution can be
made to work

e C (and C++) guarantees that if two
structures begin with the same
sequence of component types, they will
have compatible layouts




Implementation (in C)

struct Shape {
1nt type;
Point center;
s
struct Circle {
1nt type; // Same as in
Point center; // the Shape structure
1nt radius;

}s




Using the type code

struct Shape *sp;
/7': 7':/
switch (sp->type) {
case CIRCLE:
/7': 7':/
break;
/* and soon. */

}s




What's wrong with the simple

e Nothing is wrong with it
— It can be made to work

e But it does have disadvantages

— Adding a new type entails changing all the
sw1tch statements

— Layout compatibility comes about only
through convention

— The code to deal with Circlesis
scattered all over the place




The C++ approach: virtual
functions

class Shape {
public:
virtual void draw();
// ..
s
class Circle: public Shape {
public:
virtual void draw();
// ..
s




The function definitions look

void Shape::draw() {
, // ..

void Circle::draw() {

// ..
¥




Calling a virtual function

e When a pointer (or reference) to a base
class actually points (or refers) to a
derived class object, and

e You use that pointer (or reference) to
call a function that is declared virtual in
the base class, then

e The derived-class function is the one
that is actually called.




Examples

Shape& sr = /*

Circle& cr = /*

s.draw();
c.draw();

sp->draw() ;
cp->draw() ;

sr.draw() ;
cr.draw();

Shape s; Circle c;
Shape* sp; Circle* cp;

something */;
something */;

// Shape: :draw

// Circle::draw

// depends on the object
// depends on the object

// depends on the object
// depends on the object




A virtual call happens when

e A function is virtual in the base class

e A pointer or reference to a base class
actually points or refers to a derived
class object




Typical implementation

e Every object of a type with one or more
virtual functions includes a pointer to a
virtual function table

e Every virtual call fetches the address of
the function from a known offset (fixed
at compile time) in the table

e Typical cost: a few memory references
per call




Types of virtual functions

e The argument types must be identical
in base and derived classes

e The result types too, unless

— The base class function returns a pointer
(or reference) to some type T, and

— The derived class function returns a pointer
(or reference) to a type derived from T




An example

e \We might have every Shape in the
universe put itself on a doubly-linked
list

e Then we could easily draw all the
Shapes, even if some of them were
really objects of classes derived from
Shape




The data structure




Example code, part 1

Class Shape {

public:
Shape () ;
virtual ~Shape();
virtual void draw();

private:
Shape* forw;
Shape* back;
// .

s




Code, part 2

nhape* head 0;
nape* tail 0;

nape: :Shape()

forw tail;

back = 0;

(tai1l1? tail->back: head) = this;
tail this;




Code, part 3

Shape: :~Shape()

{
(this==head?head: forw->back)

(this==tail?tail:back->forw)
}




Adding new shapes

e Just do it...

class Circle: public Shape {
public:
virtual void draw();

// ..
}s

void Circle::draw()

{ /. %/}




Draw all the shapes

void drawall()
{
Shape* p = head;

while (p) {
p->draw(); // virtual call

p = p->back;




Why the virtual destructor?

e Whenever
—You say delete p, and
— The type of p is “pointer to base,” and
— p actually points at a derived object

e Then the base class must have a virtual
destructor, even if it does nothing




What does a virtual destructor

e It is a signal to the compiler that using
delete (which always destroys the
object) should go through the virtual
call mechanism

e It has no effect otherwise




Multiple abstractions

e A Shape is something that can go on
the list defined by head and ta1l

e A Shape is something that supports the
draw operation

e ACircle is akind of Shape whose
draw operation is implemented in a
particular way




Virtual functions and type
fields

e You can use virtual functions to

implement type fields:

enum Kind { SHAPE, CIRCLE /* .. */ };
class Shape {
public:
virtual Kind my_type() {
return SHAPE;
}

// ..
}s

e But it's often unnecessary in practice




Virtual functions and
constructors

e While an object is under construction or
destruction, its type is what it was

declared to be:

class Shape {
public:
// ..

virtual void draw();

Shape() {
draw() ; // Shape: :draw




Another example

e Suppose we want to represent
expressions as trees

e An expression IS
— an integer, or
— a unary operator applied to an expression, or
— a binary operator applied to two expressions

e \We would like to be able to create and
print expressions




Sample code

IntExpr* three = new IntExpr(3);
IntExpr* four = new IntExpr(4);
IntExpr* five = new IntExpr(5);
UnaryExpr* negfive =

new UnaryExpr(“-", five);
BinaryExpr* twelve =

new BinaryExpr(“*”
BinaryExpr* seven =

new BinaryExpr(“+”, negfive, twelve);

, three, four);

seven->print(cout);
should print ((-5)+(3%4))




How do we do it?

e \We will define a base class called Expr
to represent expressions
— An IntExpr will be a kind of Expr
—as will a UnaryExpr and BinaryExpr

— Every kind of Expr will support a virtual
print operation




We can already write code

class Expr {
public:
virtual void print(ostream&) = O;

virtual ~Expr() { } f——”///j
s

—

This makes it a pure virtual function




Integer expressions

class IntExpr: public Expr {
public:

IntExpr(int n0): n(n0) { }

void print(ostream& s) {

S << Nn;

;
private:

int n;

}s




Unary expressions

class UnaryExpr: public Expr {
public:
UnaryExpr(const char* s, Expr* e0):
op(s), e(el0) { }
void print(ostream& s) {
s << “(7 << op;
e->print(s);
s << )7
}
~UnaryExpr() { delete e; }
private:
Expr* e;
const char* op;

}s




Binary expressions

class BinaryExpr: public Expr {
public:
BinaryExpr(const char* s, Expr* e0Ol,
Expr e02): op(s), el(e0l1l), e2(e02) { }
void print(ostream& s) {
s << “(7; el->print(s); s << op;
e2->print(s); s << “)7;
}
~BinaryExpr() { delete el; delete e2; }
private:
const char* op;
Expr* el;
Expr* e2;
}




\We can generalize our sample

Expr* three = new IntExpr(3);
Expr* four = new IntExpr(4);
Expr* five new IntExpr(5);
Expr* negfive = new UnaryExpr(“-", five);
Expr* twelve =

new BinaryExpr(
Expr* seven =

new BinaryExpr(“+”, negfive, twelve);

6.3
"

, three, four);

seven->print(cout);




We can get rid of most of the
variables:

Expr* e =
new BinaryExpr(“+”,
new UnaryExpr(“-", new IntExpr(5)),
new BinaryExpr(“*”, new IntExpr(3),
new IntExpr(4)));

e->print(cout);
delete e;




Points to remember

e Virtual functions are meaningful only in
the context of pointers or references

e Pure virtual functions are useful when
you know that base class objects will
not exist by themselves

e If your class has a virtual function, it
probably needs a virtual destructor




Why aren’t all C++ member
functions virtual?

e Not every class needs inheritance
e The overhead, although small, exists

e Sometimes functions shouldn’t be
virtual (for example, operator([] in
the Vector example from last lecture)




Summary

e Inheritance makes it easier to describe
a family of types by describing their
similarities and differences
— The similar parts go in base classes
— Each set of relevant differences gets its

own derived class

e Virtual functions are an efficient way of
recovering the differences in C++




Homework (due Monday)

e Rewrite the Expr class hierarchy so
that it doesn't use virtual functions or
type fields

e The idea is to simulate the virtual-
function tables




