Abstraction and design

What is design, and why do you

need one?

The ideas in this lecture

e Design is
— high-level abstraction

— what is left when you remove the
implementation details

— more art than science

e It is possible—and important—to think
about design and implementation
independently

Summary of last week

e \We started with a problem
e \We designed a solution to that problem
e We implemented that solution in

— two different ways
— two different languages

e The implementations share key
abstractions

What are the key
abstractions?

e We view the /nput as a stream of
tokens.

e Fach time we read a token, we check
whether it will fit on the /ine; if not, we
write the line on the output and clear it
first.

e The above work is done in a function
called reformat.

How might we describe a

e Describe each component, including
nat it is supposed to do
nat are its inputs and outputs

nat state information the component
maintains, and what it does

Machine-readable descriptions

e In some languages, you can say quite a
bit about a component by writing
incomplete code

— In C++, you can write class definitions and
not implement the member functions

— In ML, you can write signatures and not
write corresponding structures

e \We will look at each language in turn

The Token class

e We will ignore the private data

enum Toktype {
WORD, BREAK, END

};

class Token {

public:
Token(istream®) ;
Toktype type() const;
string word() const;

}s

The Line class

e Again, we will ignore the private data

class Line {
public:
Line(int);
void reset();
bool canfit(string) const;
void append(string);
void print(ostream*) const;

The reformat function

e Here, we will ignore what the function

actually does, and just declare it

void reformat
(1stream*, ostream*, 1nt);

Is such a description a design?

e Not exactly—it says more about the
implementation than we'd like—but
— It provides valuable context for design

— It gives information in a form that can be
checked

e We can compile these three declarations as
shown, either independently or together

e We can also compile (but not run) the full
definition of the reformat function, given only
these incomplete class definitions

Machine-checkable
descriptions in ML

e \We can write signatures without the
corresponding structures

e \We can even compile code that uses
only the signatures

The TOKEN signature

signature TOKEN =
sig
datatype Toktype =
WORD of string | BREAK | END
val construct: TextIO.instream -> Toktype
end

The LINE signature

signature LINE =
sig
type T;
val construct: int -> T
val reset: T -> T
val canfit: T * string -> bool
val append: T * string -> T
val print: T * TextIO.outstream -> unit
end

Using the design-level
description

functor Reformat(structure L : LINE
structure T : TOKEN) =
struct
fun reformat(istrm, ostrm, n) =
(* definition of reformat *)
end

e The idea is that a functor lets us write

programs that know only about the
signatures of the data they use

The Reformat functor in full
detail

functor Reformat(structure L : LINE structure T: TOKEN) =
struct
fun reformat(istrm, ostrm, n) =
Tet fun f(1) =
case T.construct(istrm) of
T.BREAK =>
(L.print(1l, ostrm); TextIO.output(ostrm, "\n");
f(L.reset(1)))
| T.WORD(w) =>
if L.canfit(l, w)
then f(L.append(1, w))
else (L.print(1, ostrm); f(L.append(L.reset(1), w)))
| T.END =>
L.print(1l, ostrm)
in f(L.construct(n))
end
end

How else might we describe
our design?

Use a sketch to describe the
major components and the
information flow between them

Even such a minimal design is
useful

e From our little diagram, we can see that

— All input goes into reformat and nowhere
else

— All output comes from reformat and
nowhere else

e \What else can we see?

What else might we say about

e The ovals in our diagram represent

par

s of the program

e The arrows represent data flow

e It is easy to think about the properties
of the ovals

e What about properties of the arrows?

What does an arrow mean?

e Data moves from one part of a system
to another ...

e ... in one direction or both ...

e ... according to a particular format
— or structure
— or protocol

So we might label the arrows

stream of tokens

/ stream of lines

Complementary tools

e Class definitions (signatures) make
concrete some of the key abstractions
in the program

e Simple diagrams show how these
abstractions relate to each other

e Both can be made more concrete as the
design progresses

A larger design example

e [work in a building with hundreds of
people, hence

— hundreds of computers
— dozens of printers

e How might we organize a printing
system for such a building?

Desirable properties for a
printing system

e Easy to use, for example:

— A user of any computer should be able to
print on any printer that the computer is
equipped to handle

— The system should be reliable
e Easy to administer, for example:

— Adding or removing printers and
computers should be easy

A very high level design

Is this a good design?

e Yes, as far as it goes
e But it doesn’t go very far

Why is it a good design?

e [t captures important aspects of how
we would like printers to behave

— We don't connect printers to computers;
instead we connect them to “the network”

— Neither computers nor printers care about
each other’s details, or the details of how
the network works

What details might we fill in?

e How to handle contention for printers
— arbitration?
— spooling?

e \What protocol we use to talk to printers
— PostScript?
— TCP/IP?

e We will look only at the contention
problem

How might we handle printer
contention?

e Do nothing

— Printers designed for network
environments typically allow only one
computer at a time to talk to them

e Have a spooling system (or many!)

— Each printer has a computer designated to
receive input for that printer

— The computer resolves contention for that
printer

Our revised design

Properties of this design

e It can solve the contention problem
— as long as we do something about a
spooling system
e It is less reliable than the previous
design
— if @ spooling computer fails, it isolates the
corresponding printer

e It has become harder to administer

Whence the administrative
difficulties?

e Printers no longer connect to the
network; instead, they connect to
computers

— There might be distance limitations
— Changing a spooler requires moving cables

— How do computers talk to printers if not
through a network?

Making the design more
practical

e \We can still associate a spooling
computer with every printer ...

e ... but we can let the computer talk to
the printer over the network anyway

Our revised revised design

Ccomputer
Ccomputer)—

nwork @
T T
(rinter) (printer

What might we do next?

e Figure out how a spooler works

e Think about how computers find
printers

e How might we go about solving these
problems?

Use cases

e An increasingly popular idea in software
design is the notion of use cases:

— Think about ways in which your design
might be used

— Track the information flow through the
design, noting what happens at each stage

— Use what you learn to refine the design

Example of a use case

e User of computer A wants to print on
printer B, spooled on computer C

e What happens when we try this?

Use case diagram

C
com p\uter ~

network
/NS

What can we learn from this
example?

e \Whatever we want to print makes two
trips through the network:

— one from computer A to computer C
— one from computer C to printer B

e Is this a problem?

— Not if the network is fast enough...

— ...and a network should be much faster
than a printer, right?

Finding a performance
problem

e \When is a network slower than a

printer?

e When it is connected by a telephone
line! We have failed to account for the

's of the network are in

fact that par

people’s homes.

e Suppose, for example, that computer A
and printer B are both in my house...

A user-centric view of the
system

How might we
problem?

solve this

e Make my computer spool for my printer

— This might fail if other aspects of the
design require spoolers to be always up

e Have two spoolers

for my printer: One

for me, and one for everyone else
— This will work most of the time, but the

printer might have

to resolve contention

e Either choice affec

s the whole design

The moral of the story

e Design matters!

e You can learn a lot about design, even
with simple tools, by experimenting

e You can get the computer to help you
by writing high-level parts of the
program and compiling it—even if you
cant run it

Homework (due Monday)

e Design a system to support cashiers in
a convenience store

e The design should be detailed enough
to make it clear how to handle several
usual and unusual use cases...

e ...but it should not be more detailed
than necessary (no more than two
pages or so)

Examples of usual use cases

e A customer comes in, buys some items,
and pays with cash or a credit card

e A cashier goes on duty, and says how
much cash is in the register.

e A cashier goes off duty; how much cash
should be in the register?

Examples of unusual use

e A customer buys some items, and

— pays for part of the order with a credit card
and the rest with cash, or

— discovers a cash shortage and leaves some
items behind after they've been rung up

e A customer wants to return an item

e A cashier wants to transfer some cash
to another cashier

What to hand in

e An overall description of the system

e For each component,
— What information is stored there
— How it connects with other components

— What information goes over the
connections

e Examples of use cases it handles, and
how it handles them

