Design variations and data
abstraction




A problem

e Write a program that reads text and
“fills” the lines to make them roughly
the same length.

e Assume that a line with no text on it
begins a new paragraph.




e Input:

As I was going down the stair,
I saw a man who wasn’t there.

He wasn’t there again today;
he must be from the CIA.

e Output:

As I was going down the stair, I saw
a man who wasn’t there.

He wasn’t there again today; he must
be from the CIA.




How do we approach such a
problem?

e Understand the problem thoroughly
e Design a solution

e Implement the solution (often the
easiest part!)

e Figure out why what you did wasn't
what you really wanted

e Repeat until satisfied or out of time




Understanding the problem

e Output lines should be roughly the
same length

e Input is divided into paragraphs; output
must also be divided into paragraphs
that correspond to the input

e \What else is there to know?

— How long is “roughly the same length?”

— Does that knowledge define the entire
relationship between input and output?




How long is a line?

e Two possible strategies:

— When we exceed a given length, start a
new line at the end of the current word

— If the current word will not fit within the
given length, start a new line first

e Fach approach has advantages and
disadvantages




How does input relate to

e Every input character appears in the
output, except possibly for white-space
characters (spaces, new-lines, etc.)

e White space must be rearranged so that
output lines are the right length

e Rearrangement might replace spaces by
new-lines and vice versa, or might add
or delete white space




What we don't know

e How do the white-space characters in
the output correspond to those in the
input?

— Several different correspondences are
possible

— Even if we pick one correspondence, there
IS N0 guarantee that it is the right one

e A good solution will allow alternatives




Sample questions with open
answers

e If an input line begins with spaces,
should the output line do so as well?

— Even after the beginning of a paragraph?

— What if it begins with too many spaces?

e If two words have more than one space
between them, should the output
preserve those spaces?

— What if the output line breaks there?
— What if there are too many spaces to fit?




Two possible viewpoints

e All the characters in each line are
significant. We want to rearrange those
lines, changing as little as we can, to
meet the length requirements.

e Fach line consists of words with space
between them. We want to keep the
words, but we can change the spaces.

e How do we choose a viewpoint?




Two approaches to design

e Preserve as much flexibility as possible

— When you find you did the wrong thing, it
will be easy to change

— The program is likely to be complicated

e Look for the simplest definitions

— If they’re wrong, it will be easier to find
what’s right

— A simple program costs less to throw away




Problems should reflect
purposes

e One way to decide what problem to
solve is to ask “"How will we use the
solution?”

— Reformatting email messages
— Preparing text to be printed

e Does the usage say anything about
what we want the program to do?
—Yes: We want to limit the line length




When in doubt, start with
simple definitions

e They are easier to work with
e Maybe they will be good enough

e It is easier to make them more
complicated later than to simplify them

e For this program, we must define
— words
— paragraphs
— (output) lines




Simple definitions for this
example

e Every input character is either
significant or insignificant.

e A wordis a maximal sequence of one or
more significant characters.

e A paragraph breakis a maximal
sequence of insignificant characters that
includes two or more new-line
characters.




Defining the problem

e We can now view the input as a
sequence of words intermixed with
paragraph breaks

e The characters between two adjacent
words are interesting only if they are a
paragraph break

e \We can define a foken as either a word
or a paragraph break




Sketching the solution
(find the bugs!)

n=0 /*chars written on current line */
while (we can read a token)
if (the token is a paragraph break) {
, lstar{t a new output paragraph
else
lw = length(word
if (n+lw > max)
start a new line, n =0

write the word: n += |w

¥
h




What bugs are there?

e The computation n+=1w gives the
wrong answer

— Redefine the computation to account for
spaces between words

e We never finish the last paragraph
— Flush the output at the end




Design bugs

e If the input begins or ends with a
paragraph break, so will the output

— This may be a bug in something, but it's
not clear that it is a bug in the program

— Nevertheless, we failed to think about it in
our definitions

e \We never break a word in the middle,
even if the word is huge




Where did the bugs come

e We wrote “lw+=length(word)” without
thinking about whether that was what
we really wanted

e \We started writing programs to write
paragraphs without thinking first about
what paragraphs are

e In both cases, we rushed into
implementation too fast




What can we do differently?

e Be more careful about what we want
before we think about Aow to get it.

— If we want to limit the length of a line, we
should prove it's possible first

— If we append a word to a line, don't
assume that we will use += to keep track
of the line length; that’s an implementation
detail




OK, what do we want?

e The key notions seem to be
— Will this word fit on the current line?
— Append a word to the line
— Print a line
— Set the line to blank
o If 1 is a line, we will use notation like

1.append(w) to append word w to
line 1




We have squirmed away from
the design bug

e Saying that “we will start a new line if
the word we are about to print doesn't
fit on the current line” says nothing
about whether the word will fit on the
new line!

e If a single word is longer than the line
limit, the only alternative is to find ways
of breaking words




The not(tat)ion of objects

e The expression 1.append(w) is typical
of object-oriented languages

e The key ideas:
— We are going to operate on object 1

— The operation is called append

— The operation takes an argument, which in
this case is w

e Calling 1.append(w) might change 1




What is

an object?

o It has operations defined on it

e It has state, which is typically accessible
only through operations, rather than
directly

o It has /dentity, in the sense that two

objec

's with equal state are still two

different objects




With these notions, we can
rewrite...

1.reset();
while (we can read a token) {
1t (foken is a paragraph break) {
T.print(); l.reset();
} else {
word = token;
1t (!'1.canfit(word)) {
T.print(); l.reset();
}

1.append(word) ;




Where are we now?

e \We have defined two concepts, /ine and

token, that are

— abstract enough to be independent of any
particular programming language and
implementation

— concrete enough that we can write and discuss
programs that use them

e We still have an implementation job
ahead of us




Abstract data types

e Our lines and tokens are examples of
abstract data types

— Their users know them by their properties
— The implementation details are hidden

e Some languages have direct support for
data abstraction

e Other languages make you work at it




Typical support for data
abstraction

e An abstract data type is
— a data structure
— a collection of operations

e The implementations of the operations
are allowed to know about the data
structure

e The user cannot get at the data
structure directly




C++ terminology

e The part of a C++ program that
describes an abstract data type is called
a class definition

e The type itself is called a c/ass

o Objects are /nstances (variables and
values) of that class in a program




Homework Mechanics

e Any language, any computer
e Assignments are usually due on Monday

e | ate assignments will not be accepted
unless there is a very good reason

e Hand in assignments on paper,
preferably stapled

e Please save the assignments after you
get them back




What to hand in

e Source code (with comments)
e Input, if any
e Output




What is in a proposal

e The names of the team members
e A description of the project

e What will it “cost” (schedule)

e How will you build it (organization)

e What will it build on? (/e. libraries and
other tools)

e Why did you choose this project?




Project Description

e What it will do

e \What else it will do if you have time
e Why it is interesting

e What is challenging about it




Presentations

e A sales pitch for the project

e 10 minutes per presentation (so that
every team gets a chance)

o It's OK if one team member speaks for
the team

e \Written handouts and overhead slides
(no more than 5) are encouraged




