Advanced programming
techniques

Andrew Koenig

ark@research.att.com
http://www.research.att.com/info/ark

Barbara E. Moo
bmoo@worldnet.att.net

Today's topics

N0 are we?

nat is the purpose of this course?
nat will it cover?

nat will be expected of you?

Who are we?

e Andy:
— Programming since 1967
— Used lots of machines and languages

— Coauthor of Columbia Computer Chess
Program, 1970-/1

— Project editor of C++ standards committee

Who are we?

e Barbara:
— 15+ years of software management
— Managed 1st commercial C++ compiler

— Directed AT&T's Worldnet® ISP
development program

— Managed various data processing
applications

The purpose of the course

e | earn ideas in programming and system
design that transcend any one language

e | earn that programming is not just
coding

e | earn by doing

Underlying philosophy

e The software universe changes fast

— It is easy to drown in details of one system
or another

— Nevertheless, there are things we can learn
that can endure

e Programming is a human activity

The most important idea

e Abstraction

— “the act or process of separating in thought, of
considering a thing independently of its
associations; or a substance independently of its
attributes; or an attribute or quality independently
of the substance to which it belongs” (OED)

— “leaving out of a humber of resembling ideas what
is peculiar to each” (attributed to Locke by
Priestly, 1782)

— Selective ignorance (A.R. Koenig, 1990’s)

Subsidiary themes

e Know, don‘t guess
— what problem are you trying to solve
— prove it's broken
— speed matters—development, compilation,
execution etc.
o Stuff happens
— design to eliminate errors
— underpromise & overdeliver
— test early & often

Abstraction in practice

e Reversing an array
1 =0; J = n-1;
while (i < j) {
swap(al[i], aljl);
++15 --]J;
h
e What assumptions appear in this
fragment that we can ignore?

Generalizing the algorithm

e Reversing a sequence
Pp = 4d, q = a+n,
while (p !'= q) {

-—0;
it (p = {
swap(*p, *q);
++pP,
}
}

e What assumptions have we removed?

Other ways of reversing

e Copy from one sequence to another,
reversing as you go.

e Attach a tag to every element, then sort
the sequence.

e Push the elements on a stack, then pop
them.

Other forms of abstraction

e Every programming language is an
abstraction of a computer

e A file system abstracts a particular style
of information storage and retrieval

e A relational database abstracts a
different style

Abstractions create barriers

e You can't take advantage of what
you're ignoring.
e An exam question from another course:

— The purpose of an operating system is to
keep users away from the computer.
Discuss.

e "Good fences make good neighbors.”

Why are barriers good?

e Information flow across barriers is
controlled, and thereby reduced.

e When we design a large system, we can
avoid having to learn about what is on
the other side of a barrier.

e \We can worry only about what is on our
side, and what crosses the barrier.

Abstraction is rarely free

e Constrained information flow is usually
less efficient.

e "Why can’t I just reach in and tweak
that variable? It's sitting right there...”

So what do we do?

e A key to successful programming is
knowing how abstract to be and when.

— Totally concrete programs take too long to
write, and don’t work.

— Totally abstract programs take too long to
run, and don’t do enough.

e A sense of perspective is important.
— O(nlog n)is nearly O(n), but O(r?) isn't.

The point of these examples

e Abstraction is useful

— It is better to solve the reversing problem
once and be done with it

— More generally, we need a way to cope
with problems that are too big to handle all
at once

e Total abstraction is impossible
— Ignoring everything leaves us with nothing

Learn by writing programs

e that do what was asked...
e ...and do it clearly...
e ...and with test data that proves it....

e ...and which can gracefully handle the
next change.

Modifiability

e Classroom exercises are always artificial

e Still, you can often pretend that you're
writing a “real program”

What are “real programs?”

e The people who want them don't
always know what they want (even if
they're the authors)

e \What they want changes over time

e Successful solutions suggest new
problems

e Successful programs usually got that
way a little at a time

General implications

e Solutions to problems are rarely final
e When writing a program, it is important
to think about how it might change

e Well written programs will take
plausible future changes into account

e Fach aspect that might change should
appear in as few places as possible

Homework implications

e Homework assignments are
unrealistically small, when compared
with commercial projects

e Therefore, you should be more
aggressive about imagining future
changes than you might be otherwise

e Homework programs should be better
organized than their size suggests

An example

e Imagine an assignment to compute the
prime numbers < 10000 and print them
in columns

e \What changes might we imagine for
future versions?

Alternative versions

e Compute something other than primes

e Compute more primes (too many to fit
in memory)

e A different output format

e Do something with the primes other
than print them

Modularity

e If you intertwine computation and
printing, it becomes harder to change
either one

e It is better to keep them separate and
define a clean (i.e. as simple as
possible) interface between them

Modularity example

e Right:
1f (p 1s prime)
print(p);
e Wrong:

1T (p 1s prime) {
buffer[n] = p;
1f (+44+n == buffer_size)
flush_buffer();

What is expected of you?

e Come to class. Ask questions.
Be critical. Think for yourself.

e Form project teams (3—6 people).
Propose a project; get approval; do it.
e \Watch the calendar.

Schedule

e Class: M, W 1:30-2:50

e Project deadlines:

Proposals due Friday, February 26
Presentations in class March 1 and 3

Revised proposals due Monday, March 22
Projects due Monday May 17 (during finals)

Course grades

e Project counts 40%; all team members
get the same project grade

e Homework counts 40%; exams 20%

e Grades will usually be based on
medians, not means

e Project must be complete to receive a
grade at all!

Calibration

e | ast year’s grades:
— A (including £): 15
— B (including £): 19
— C (£ not allowed): 6
— D (£ not allowed): 1
— F: none

Program grades

e Does it work?
— Does it do what it is supposed to do?

— For the project: Does it do what the
proposal said it would do? Does it do
more? How ambitious is it?

e How easy is it to tell that it works?
e How well is it written?

Mechanics of programminc

e \We will probably use C++ for most
examples, explaining as we go.

e You can do homework in any language.

e You know more than we do about the
local computing facilities.

e You may wish to consider language
preferences when choosing project
partners.

Project teams

e Form your own teams (3—6 people)

e The team picks the project (try to
choose something fun and useful)

e Get started early; ask if you need help

Project proposals

e Pretend that we run a venture capital
company

e The proposal is what you will use to
convince us to fund your startup

e You must do what you proposed!
— Don’t be too ambitious
— Make it work correctly; then add to it

Project essentials

e Estimate task duration and report actual

e Design—even (especially!) if it changes
during development

e Test plan

—You can develop the test facilities while
you're developing the system

— One person should probably work
exclusively on testing

e Documentation (external and internal)
e Organization (who is doing what?)

Homework, part 1
(due Monday)

e Write a program to generate a
permuted index.

— An index in which each phrase is indexed

by every word in the phrase:

The quick brown fox

the quick brown fox
The quick brown fox
The quick brown fox
The quick brown fox

Suggested Strategy

(thanks to the AWK book)

e Read a line and generate rotations

— each rotation puts a different word first
and rotates previous first word to end

e Sort the rotations

e Unrotate and print the index

— find beginning of original phrase in the
rotation and put phrase together printed
with appropriate formatting

Illustration

e After rotations, we should have:

The quick brown fox
quick brown fox The
brown fox The quick
fox The quick brown

e After sorting, we should have:

brown fox The quick
fox The quick brown
quick brown fox The
The quick brown fox

Illustration, continued

e \When we print the output, we must
remember how much each line was
rotated:

brown fox | The quick
fox | The quick brown
quick brown fox | The
The quick brown fox |

o All that's left is to swap the two part
the line when we print it.

Homework, part 2

e Assume you're using a programming
language that supports strings, in which
evaluating s+t takes O(len(s)+len(t))
time. How long does this loop take?

S — €€) ;
while (--n >= 0)
= S + X;
e Prove it.

Suggested reading (part 1)

(All published by Addison-Wesley)

Bentley: Programming Pearls and More
Programming Pearls

Brooks: 7he Mythical Man-Month

Gamma, Helm, Johnson, and Vlissides:
Design Patterns

Koeniqg: C 7Traps and Pitfalls
Koenig and Moo: Ruminations on C++
_ippman and Lajoie: C++ Primer, 3rd edition

Suggested reading (part 2)

Reade: Elements of Functional Programming
Sethi: Programming Languages—

Concepts and Constructs
Stroustrup: 7he Design and Evolution of C++

Stroustrup: 7he C++ Programming Language

