Programming abstractly

Remember the purpose of the
course

e Learn ideas in programming and system
design that transcend any one language

 Learn that programming is not just
coding

e Learn by doing

The most important idea

« Abstraction

— “the act or process of separating in thought, of
considering a thing independently of its
associations; or a substance independently of its
attributes; or an attribute or quality independently
of the substance to which it belongs” (OED)

— “leaving out of a number of resembling ideas what
is peculiar to each” (attributed to Locke by
Priestly, 1782)

— Selective ignorance (A.R. Koenig, 1990’s)

Abstraction is selective
ignorance

« When you drive a car, thinking about
how the engine works is a distraction

< When you repair a car, thinking about
how the engine works is essential

» Abstraction is deciding which aspects of

a problem to consider and which ones
to ignore

Kinds of abstraction

« Design
< Implementation
e Chunking

Design

« Design is mostly breaking large
programs into smaller parts
« Crucial decisions include

— where to draw the boundaries between the
parts

— how the parts should communicate
—the interface(s) between the parts

What makes a good design

« It starts with a clear understanding of
the problem

e Each component is well defined
« Each component has sensible, useful
properties

= The components accurately model the
problem

Design strategy

< Design is constructing a model

< A good model behaves similarly to what
it models

e Therefore:

— How our models behave is the most
important thing about them

— We should think about behavior before
anything else

Design tactics

« What are the important pieces of our
design?

« How do they behave? What operations
do they support?

» Once we have decided on behavior, we
can often begin writing code
immediately

Class definitions as a design
aid

« When you write down the public parts
of a class definition, you are already
part way toward your design

< You can compile the class before you fill
in the details

Implementation abstraction

* Two forms

— Conceptual abbreviations: subroutines,
classes, templates, etc.

— Chunking

An example of abstraction
(in Awk)

for (i = 1; 1 <= NF; ++i)
++words[$i]
¥
END {
for (s in words) {
print words[s], s
¥

}

Why was this program easy?

« automatic input loop
« input broken into fields
« variable-length strings
 associative arrays
— elements created automatically
— easy iteration
= automatic memory management

A similar program in C++

#include <iostream>

#include <string>

#include <map>

int mainQ {
std::map<string, int> words;
std::string s;
while (std::cin >> s) ++words[s];
std::map<string, int>::iterator i;
for (i = words.beginQ);

i !'= words.end(Q); ++i)
std::cout << i->second << ‘“\t”
<< i->First << std::endl;

Why was this program easy?

« easy to read a word at a time
« variable-length strings
 associative arrays
— elements created automatically
— easy iteration
= automatic memory management

Comparing C++ with Awk

e The Awk program is shorter
< An informal test shows that the Awk
program is about twice as fast

< So why bother with the C++ version at
all?

The real difference

« Awk was designed to solve this kind of
problem

e C++ was designed to make it easy to
implement libraries for a wide variety of
problems

» The standard library doesn’'t have
particular applications in mind

What about performance?

« Awk has a built-in operation to read a
line and break it into fields

< This operation is carefully optimized,
because it is so common

e The C++ version spends most of its
time reading input

« Writing a high-performance “Awk input”
abstraction might pay off

Possible conclusions

« If you have a language that is intended
to solve your specific problem, use it

« Otherwise, a language that supports a
range of abstractions is useful—if you
use it that way

Abstraction and chunking

e The main part of design is creating
suitable high-level abstractions

e The main part of programming is
creating suitable low-level abstractions
and chunks

Chunking

« We read text in words and phrases, not
letters

« Similarly, we group together visual
patterns that recur in programs
(Example: *p++ = *q++)

« Finding useful chunks makes programs
easier to understand, even when all the
details are still right out in the open

An example of chunking

Fay
PN
s Y
i ™,
rd ,

/S Paris \
s AN
// in the ™

/S the Spring \\

What did the text say?

The point of chunking

- We see what we expect to see
« Therefore, if we wish to be clear, we
should write what people expect to see

—which means we need to know (or
influence) what people will expect

—which probably requires a community

Another example of chunking

char* strcpy(char* p, const char* q) {
while (true) {
*p = *q;
if (*q == “\07)
return;
++p; ++q;
¥
¥
char* strcpy(char* p, const char* q) {
while (*p++ = *q++) ;
3

Object-oriented programming

< An object has a type, a state, and a
behavior (or behaviors)

= Sometimes we care about these
properties, sometimes not

< An object-oriented language will make
it easy to support objects to different
degrees of abstraction

Why is OOP useful?

* Programming objects are useful
abstractions of physical objects

< Even programs that do not deal with
physical objects often want to offer
behavior that models physical objects

« It is no surprise that OOP started out as
a tool for writing simulation programs

OOP is not the world

e Pure FP (functional programming) is the
opposite of pure OOP
—In OOP, everything is data, even programs
—In FP, everything is program, even data

« The resulting style is dramatically
different

Generic programming

< A generic program is one that uses as
little knowledge as possible about its
surroundings

« Different languages express generic
programs differently
— Smalltalk uses generic typing
— C++ uses templates
— FP languages often support generic types

C++ templates

e Types that are dynamic during
compilation and static during execution

» Often used to express containers and
iterators

« Can be used as a way of connecting
parts of a system

Memory management

< Some languages handle it automatically

« If you are using a language that
doesn’t, you must make it part of your
abstractions (handles, iterators, etc)

e C++ often makes it easy to do so

« Memory is not the only resource that
programs must manage

Advice about programming

» Understanding the problem clearly is
the hardest part of programming

« Making your design fit the your
understanding is second hardest

« If you got both those parts right,
implementation is usually easy

« So if your implementation goes to
pieces, take another look at your design

Advice about languages

< Language and design usually depend on
each other, at least a little

< Choice of language should depend on
the whole context
—what is available
—local culture
—what problems you want to solve

« Learn several languages—thoroughly

Meta-advice

Programming is a human activity;
forget that and all is lost.

