Generic programs

Why bother?

C++ Standard Library

¢ Provides generic
— containers
—iterators
— algorithms
¢ Algorithms operate on (most) any
container

o Iterators provide the glue between
algorithms and containers

Using the library

¢ QObviously, avoids (re)writing the same
algorithms over and over

¢ Less obviously, lets us write surprisingly
succinct programs to solve common
programming problems

Review

¢ 5 kinds of iterator categories

o Iterators provide data structure
independence

¢ Algorithms use iterators to manipulate
the contents of unknown kinds of
containers

e We can write N algorithms for use with
M container types in O(M+N) effort
rather than O(N*M)

A simple example

e Copy a vector into a built-in array:

vector<string> v(100);
// fill up the vector

string array[100];
copy(v.begin(), v.end(), array);

Algorithms & containers

¢ Algorithms operate on elements not on
containers.
e A common mistake:

Tist<string> 1;
// fill up the Tist

vector<string> v;
copy(1.begin(), 1.end(), v.begin());
¢ This code fails because we never
allocated any space for v.

Alternatives

// Alternative 1
vector<string> v(1.size());
copy(1.begin(Q), 1.end(), v.begin());

// Alternative 2

vector<string> v;
v.resize(l.size());

copy(1.begin(), 1.end(Q), v.begin());

// Alternative 3
vector<string> v;

copy(1.begin(), 1.end(), back_inserter(v));

Containers with unknown
Size

¢ The library supplies iterators that read
from and write to streams.

e We can use these as we would any
other iterator:

copy(istream_iterator<string>(cin),
istream_iterator<string>(),
back_inserter(v));

Solving the homework

¢ Use an iterator to find the sum of
floating point numbers read in from the
standard input:

cout <<
accumulate(istream<double>(cin),
istream<double> (),
0.0);

o Include <numeric> to getaccumulate

The hard part

template<class T> class Istream_iterator {
istream* str;
T value;
bool end_marker;
friend bool operator!=
(const Istream_iterator<T>&,
const Istream_iterator<T>&);
void read() {
end_marker = (*str) ? true : false;
if (end_marker) *str >> value;
end_marker = (*str) ? true : false;

}

More of the hard stuff

public:
Istream_iterator():
str(&cin), end_marker(false) { }
Istream_iterator(istream& s):
str(&s), end_marker(false) { read(); }
const T& operator*() const { return value; }
Istream_iterator<T> operator++(int)
{ Istream_iterator ret = *this;
read();
return ret;
}
IH

The rest of the hard stuff

template <class T>

bool operator!=
(const Istream_iterator<T>& Ths,
const Istream_iterator<T>& rhs)

{
return '(Ths.str == rhs.str &&
Ths.end_marker == rhs.end_marker
|| T.end_marker == false &&
rhs.end_marker == false);
}

The easy part

template <class It, class T>
accum(It b, It e, T sum) {
while (b !'= &)
sum += *b++;
return sum;

int main() {
cout << accum(Istream_iterator<double>(cin),
Istream_iterator<double>(),
0.0);
return 0;

}

A word-processing example

¢ Assume we are writing a WYSIWYG
editor.

* We want to allow the user to change
the paragraph style, switching from
block indented paragraphs to space
indented paragraphs.

Block indented

This Is a block-indented paragraph.
Note that there is no indentation on the
first line of the paragraph.

Each paragraph is separated from the
next by a blank line.

Space indented

This is not a block-indented
paragraph. Note that the first line of
each paragraph begins with spaces.

Paragraphs are not separated from
each other by blank lines.

Strategy

¢ Assume the document to reformat is
stored in a vector.

¢ Write a function that will:
—find consecutive empty lines
— delete the empty lines

—insert indentation in the next line, checking
first that the next line is not itself empty.

The code

void indent(vector<string>& doc) {
int i = 0;
while (i < doc.size()) {
// find empty lines
while (i < doc.size() & doc[i].empty()) {
// erase empty lines
doc.erase(doc.begin() + i);
// insert indentation, if appropriate
if (i < doc.size() && !'doc[i].empty())
doc[i].insert(0," S
}
++i;
}
}

Destructive operations

¢ erase removes the indicated element

—there are fewer elements in doc after the

erase which explains all those tests on
doc.size()

— all the elements after the one erased
must be moved
e Qur program works but performance
degrades with large inputs
e Why?

Another approach

e Apparently, we need a data structure
from which we can efficiently remove,
for example, Tist

¢ But, first, we need to eliminate the
dependence on indices
—indices are the problem
- T4 st does not support index operations

Use iterators instead

void indent(vector<string>& doc) {
vector<string>::iterator iter = doc.begin();
while (iter != doc.end()) {
// find empty lines
while (iter != doc.end() & iter->empty()) {
// delete the empty line
iter = doc.erase(iter);
// insert indentation, if appropriate
if (iter != doc.end() && !iter-> empty())
iter->insert(0, " S
}

if (iter != doc.end()) ++iter;
}
}

One subtlety

¢ Note that we check before incrementing
iter. Why?

— Incrementing past the end () value
is undefined and the call to erase might
have advanced 1iter to the end ().
—The whiTe loop tests
iter != doc.end()
which is more general: Most iterators only
provide (in)equality .

Using List Instead

void indent(list<string>& doc) {
Tist<string>::iterator iter = doc.begin();
while (iter != doc.end()) {
// find empty lines
while (iter != doc.end() & iter->empty()) {
// delete the empty line
iter = doc.erase(iter);
// insert indentation, if appropriate
if (iter != doc.end() && !iter-> empty())
iter->insert(0, " S
}
if (iter != doc.end) ++iter;
}
}

Why bother?

File Size 1ist vector

938 0.0 0.0
1870 0.1 0.2
10120 0.7 4.4
20240 1.5 22.6

Another example

¢ Produce a cross-reference
— for each word in the input
— list the lines on which the word occurred
* We'll need to store the words and an
associated container that will hold the
line numbers

The map class

¢ Associative arrays are containers that
behave like arrays but their indices can
be any well-ordered type

o AWK, Perl and some other languages
have associative arrays built-in

¢ In C++, they are part of the library

First, a simpler problem

o We'll start by just counting the number
of times each word occurs in the input
map<string> m;
string s;
while (cin >> s)
mis]++;

Printing the contents

¢ Dereferencing a map yields a pair

e pair is asimple library class that
contains two values, called first and
second.

¢ These data members are pubTic.

Printing the map

map<string,int>::const_iterator
iter = m.begin(Q;
while (iter != m.end()) {
cout << iter->first

<"
<< iter->second

<< endl;
++iter;

Strategy for X-ref

¢ Read a line of input, remembering the
current line number;

¢ Break the line into words;
e Strip punctuation;
¢ Store the word in a map;

¢ Update the value indexed by the word
to indicate that it occurred on the
current line number.

Variables

// map from words to Tine numbers
map<string,vector<int> > m;

// temporary to hold words as we read them
string s;

// 1ine counter
int line_cnt = 0;

Read the input

while (getline(cin, s)) {
Tine_cnt++;
string::iterator b, e = s.begin();
while((b = find_if(e, s.end(),
notl(ptr_fun(isspace)))) !'= s.end()) {
e = find_if(b, s.end(), isspace);
string w(b, e);
w.erase(remove_if(w.begin(), w.end(),
ispunct), w.end());
vector<int>& v = m[w];
if (v.empty() || line_cnt !'= v.back())
v.push_back(line_cnt);

Library functions

o find_ifis like find but it tests a predicate
rather than looking for a specific value

find_if(e, s.end(), notl(ptr_fun(isspace)))
is equivalent to

boo1 notspace(char c¢) {
return lisspace(c);

Y/
find_if(e, s.end(), notspace);

Print the vector

map<string, vector<int> >::const_iterator
map_it=m.begin();
while (map_it != m.end()) {
cout << map_it->first << ": ";
const vector<int>& v = map_it->second;
vector<int>::const_iterator
vec_it = v.begin();
while (vec_it '= v.end()) {
cout << *vec_it;
if (++tvec_it != v.end())
cout << “,";
else
cout << endl;
} ++map_it;

Homework

¢ Reimplement the cross-reference
program without using the standard
library algorithms or iterators.

